TIGER

Journal Articles: 44 results
The Origins of the Symbols A and Z for Atomic Weight and Number  William B. Jensen
Traces the origins of the symbols A and Z for atomic weight and atomic number.
Jensen, William B. J. Chem. Educ. 2005, 82, 1764.
Nuclear / Radiochemistry |
Periodicity / Periodic Table
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
A Different Approach to a 3-D Periodic System Including Stable Isotopes  Alexandru T. Balaban
On a Periodic System with the two dimensions represented by Periods and Columns, one may stack each stable nuclide of an element along the third dimension. This "Downtown Area" representation is helpful for interconnecting concepts of: element, isotope or nuclide (stable vs. radioactive), atomic weight, atomic number, mass number.
Balaban, Alexandru T. J. Chem. Educ. 1999, 76, 359.
Periodicity / Periodic Table |
Isotopes |
Nuclear / Radiochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics  I. A. Leenson
The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century.
Leenson, I. A. J. Chem. Educ. 1998, 75, 998.
Learning Theories |
Nuclear / Radiochemistry |
Kinetics
Dice Shaking as an Analogy for Radioactive Decay and First Order Kinetics  Emeric Schultz
An experiment involving the shaking of sets of different sided dice is described. Dice of 4, 6, 8, 10, 12 and 20 sides are readily available. This experiment serves as an easily understood analogy for radioactive decay and for the more general case of first order kinetics.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 505.
Kinetics |
Nuclear / Radiochemistry
Radioactivity in Everyday Life  S. G. Hutchison, F. I. Hutchison
This paper discusses the terminology appropriate to radiation exposure and dose, the three sources of natural background radiation (cosmic radiation, cosmogenic radiation, and terrestrial radiation), and several radioactive isotopes that are significant contributors to the radiation exposure received by individuals.
Hutchison, S. G.; Hutchison, F. I. J. Chem. Educ. 1997, 74, 501.
Learning Theories |
Nuclear / Radiochemistry |
Isotopes |
Consumer Chemistry
Simple Rules for Determining Nuclear Stability and Type of Radioactive Decay  Mark L. Campbell
Simple rules for determining nuclear stability and type of radioactive decay.
Campbell, Mark L. J. Chem. Educ. 1995, 72, 892.
Nuclear / Radiochemistry
Simulating and Visualizing Nuclear Reactions  Atwood, Charles H.; Paul, Kimberly M.; Todd, Stefani D.
Simulating nuclear collisions and reactions that nuclei experience in particle accelerators and reactors using colliding water droplets videotaped at very high shutter speeds; includes apparatus, procedure, and results.
Atwood, Charles H.; Paul, Kimberly M.; Todd, Stefani D. J. Chem. Educ. 1995, 72, 515.
Nuclear / Radiochemistry
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
High-Sensitivity Gamma Radiation Monitor for Teaching and Environmental Applications  Lyons, R. G.; Crossley, P. C.; Fortune, D.
Design, construction, and calibration of a high-sensitivity gamma radiation monitor.
Lyons, R. G.; Crossley, P. C.; Fortune, D. J. Chem. Educ. 1994, 71, 524.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Present and Future Nuclear Reactor Designs: Weighing the Advantages and Disadvantages of Nuclear Power with an Eye on Improving Safety and Meeting Future Needs  Miller, Warren F., Jr.
An overview of how nuclear energy is produced on macroscopic and microscopic scales with consideration given to benefits and liabilities of this energy source. The article includes a short look at nuclear power uses overseas and contains information about waste disposal, public opinion, and potential technical improvements.
Miller, Warren F., Jr. J. Chem. Educ. 1993, 70, 109.
Nuclear / Radiochemistry |
Green Chemistry |
Consumer Chemistry |
Applications of Chemistry
On neutron numbers and atomic masses  Heyrovsk, R.
Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers.
Heyrovsk, R. J. Chem. Educ. 1992, 69, 742.
Nuclear / Radiochemistry
A cumulative count method for determining the half-life of barium-137 and gallium-68 radioactive isotopes: A spreadsheet application   Hughes, Elvin, Jr.
A profile of a spreadsheet application illustrating a cumulative count method for determining the half-life of barium-137 and gallium-68 radioactive isotopes.
Hughes, Elvin, Jr. J. Chem. Educ. 1991, 68, A41.
Nuclear / Radiochemistry |
Laboratory Computing / Interfacing
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Beta decay diagram   Suder, Robert
Too often instructors believe that students can intuitively understand nuclear decay from balanced equations, but it has been the author's experience that a diagram greatly enhances student knowledge of this process.
Suder, Robert J. Chem. Educ. 1989, 66, 231.
Nuclear / Radiochemistry
Determining the solubility of Ca(OH)2 using 45Ca as a tracer  Edmiston, Michael D.; Suter, Robert W.
These authors have developed a simple lab that can be incorporated into freshman chemistry that allows students to understand the power of radiochemistry as an analytical tool as well as gain perspectives about real versus imagined dangers of radioactivity.
Edmiston, Michael D.; Suter, Robert W. J. Chem. Educ. 1988, 65, 279.
Nuclear / Radiochemistry |
Medicinal Chemistry
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
Nuclear Energy  Mickey, Charles D.
A brief summary of the history and key concepts of nuclear energy.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 360.
Nuclear / Radiochemistry
Variation of radioactive decay rates  Wolsey, Wayne C.
133. It is stated frequently in introductory chemistry texts that radioactive decay rates are invariant. Students are led to the impression, implicitly, if not explicitly, that changes in chemical form, temperature, pressure, etc. have no effect upon the half-lives of unstable nuclei. This constancy of decay is perhaps true for some particular modes of decay, but by no means is it true for all.
Wolsey, Wayne C. J. Chem. Educ. 1978, 55, 302.
Nuclear / Radiochemistry |
Thermodynamics
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Some simple classroom experiments on the Monte Carlo method  Para, A. Foglio; Lazzarini, E.
In this present paper some applications of the Monte Carlo method suggested to freshmen in nuclear physics and chemistry courses are described. These applications are concerned with radioactive decay, statistical fluctuation of the decay, the slowing of fast neutrons, and the calculation of the ratio of partial cross sections of certain nuclear reactions.
Para, A. Foglio; Lazzarini, E. J. Chem. Educ. 1974, 51, 336.
Nuclear / Radiochemistry
Stellar nucleosynthesis. A vehicle for the teaching of nuclear chemistry  Viola, V. E., Jr.
Summarizes the basic properties of matter, stellar evolution and nucleosynthesis, radioactive decay, synthetic and "super-heavy" elements, and radiation in the environment.
Viola, V. E., Jr. J. Chem. Educ. 1973, 50, 311.
Nuclear / Radiochemistry |
Astrochemistry
Chemistry in art. Radiochemistry and forgery  Rogers, F. E.
It wasn't until a radiochemical analysis in 1968 that a 1937 forgery of a 17th century Dutch master was confirmed as a fake.
Rogers, F. E. J. Chem. Educ. 1972, 49, 418.
Applications of Chemistry |
Nuclear / Radiochemistry |
Isotopes
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 328.
Enrichment / Review Materials |
Applications of Chemistry |
Nuclear / Radiochemistry |
Thermodynamics |
Mass Spectrometry |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
General chemistry demonstrations based on nuclear and radiochemical phenomena  Herber, Rolfe H.
This paper is intended to provide a brief survey of lecture demonstrations, suitable for a general chemistry course, that incorporate some of the ideas, concepts, techniques, and instrumentation of the field of nuclear and radiochemistry.
Herber, Rolfe H. J. Chem. Educ. 1969, 46, 665.
Nuclear / Radiochemistry |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
Nuclear physics and the fundamental particles (Heckman, Harry H.; Starring, Paul W.)  Allen, Donald S.

Allen, Donald S. J. Chem. Educ. 1963, 40, 615.
Nuclear / Radiochemistry
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Letters  Hendricks, B. Clifford
A brief examination of the way in which general chemistry textbooks portray the emission of alpha, beta, and gamma rays.
Hendricks, B. Clifford J. Chem. Educ. 1960, 37, 161.
Nuclear / Radiochemistry
Teaching mass-energy equivalence  Foster, Laurence S.
It is the purpose of this paper to show how the concept of mass-energy equivalence may be introduced in an elementary chemistry course while retaining a focus on chemistry.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 300.
Nuclear / Radiochemistry
A continuous cloud chamber  Kuehner, A. L.
Details the construction and use of a continuous cloud chamber.
Kuehner, A. L. J. Chem. Educ. 1952, 29, 511.
Laboratory Equipment / Apparatus |
Nuclear / Radiochemistry
Autoradiography as a science project  Huber, William S.
Describes several autoradiography techniques in which photographic plates are exposed to radioactive sources.
Huber, William S. J. Chem. Educ. 1951, 28, 226.
Nuclear / Radiochemistry