TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
2 Molecular Structures
14 Journal Articles
3 Other Resources
Molecular Structures: 2 results
Carbon Monoxide CO

3D Structure

Link to PubChem

VSEPR Theory |
Gases |
Toxicology |
Atmospheric Chemistry |
Bioinorganic Chemistry |
Biosignaling |
Organometallics

Nitric Oxide NO(r)

3D Structure

Link to PubChem

VSEPR Theory |
Atmospheric Chemistry |
Free Radicals |
Gases |
Biosignaling

Journal Articles: First 3 results.
Pedagogies:
Synthesis of Plant Auxin Derivatives and Their Effects on Ceratopteris richardii  Corey E. Stilts and Roxanne Fisher
In this experiment, organic chemistry students synthesize derivatives of their own design of the plant auxins indole-3-acetic acid and 1-naphthalene acetic acid. Biochemistrycell biology students then examine the development of Ceratopteris richardii gametophytes on medium containing auxin derivatives synthesized in the organic chemistry lab.
Stilts, Corey E.; Fisher, Roxanne. J. Chem. Educ. 2007, 84, 999.
Biological Cells |
Bioorganic Chemistry |
Hormones |
Synthesis
Capsaicin, from Hot to Not; Can New Pain-Relieving Drugs Be Derived from This Substance Known To Cause Pain?  David B. Rusterholz
This article traces the development of modified capsaicin structures that offer improved analgesic effectiveness with minimal pungency and the discovery of compounds that act as antagonists at the TRPV1 receptor, which appear to hold promise as new drugs that will be useful for the treatment of some types of pain.
Rusterholz, David B. J. Chem. Educ. 2006, 83, 1809.
Applications of Chemistry |
Bioorganic Chemistry |
Biosignaling |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Molecular Recognition
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
View all 14 articles
Other Resources: 3 results
Collection of Chiral Drug, Pesticide, and Fragrance Molecular Models  William F. Coleman
The article by Mannschreck, Kiessewetter, and von Angerer on the differential interactions between enantiomers and biological receptors (1) is the source for this month's Featured Molecules. Included in the molecule collection are all of the molecules described in the paper. In many instances we have included structures of multiple optical isomers of the same molecule so that students can not only see the forms that are active, but those that are less active, inactive, or act in an undesirable manner. These molecules will serve as good practice in determining optical configurations, and will also introduce additional forms of isomerism that students may be less familiar with than they are with R and S. Since multiple enantiomers and diastereomers are provided, students may use these molecules, together with an appropriate computational package, to verify that enantiomers have the same energy while diastereomers do not. The tuberculosis drug ethambutol provides an interesting case as both nitrogen atoms are also chiral as well as the two chiral carbon atoms. A calculation on a given structure will include the effect of that nitrogen chirality, although nitrogen inversion is expected to be quite rapid in this molecule. The conformations for the ethambutol molecules that are included here consider all four chiral atoms and are of the form (CNNC). A reasonable computational exercise would be to find the transition state for nitrogen inversion and the barrier height for that process. The supplemental material that is included with the featured article (1) includes a number of molecules that we will add to the collection as time permits. The result, including enantiomers and diastereomers, will be well over 200 additional molecules. A notice will appear in the JCE Featured Molecules column when this new set of molecules is available in JCE Online.
Chirality / Optical Activity |
Biosignaling
The Heisenberg Uncertainty Principle and Electronic Synapses  Ed Vitz
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Quantum Chemistry |
Biosignaling
Molecular Models of Plant Hormones  William F. Coleman
The paper "Synthesis of Plant Auxin Derivatives and Their Effects on Ceratopteris richardii" by Corey E. Stilts and Roxanne Fisher describing an experiment begun in the organic labs and completed in a biochemistry cell biology lab provides the featured molecules for this month. The molecules in Figure 1 of that paper have been added to the collection. There is nothing particularly surprising about their structures, but students might be interested in seeing whether they can determine any structure/regulating effect relationships as the number of synthesized auxin derivatives grows. Additionally, students with little or no biochemistry background might wish to explore other systems that act as growth regulating hormones in plants, as an introduction to the variety of molecular structures that can display such bioactivity. Such molecules range from the very simple, ethene, to the adenine-derived cytokinins (an example of which, zealtin, is shown here) and the brassinosteroids. Brassinolide, a commonly occurring brassin, is also shown. These latter two structures have also been added to the molecule collection. All of the structures have been optimized at the HF/6-31G(d) level.
Synthesis |
Biological Cells |
Hormones |
Bioorganic Chemistry