TIGER

Journal Articles: 16 results
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type  Natisha L. Rose, Monica M. Palcic, and Stephen V. Evans
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. In this review the chemistry of the blood group ABO system and the role of glycosyltransferase A, glycosyltransferase B, and the four amino acids critical to determining blood group status are discussed.
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V. J. Chem. Educ. 2005, 82, 1846.
Carbohydrates |
Enzymes |
Kinetics |
Bioorganic Chemistry |
Crystals / Crystallography |
Molecular Biology |
X-ray Crystallography |
Amino Acids
A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule  David K. Smith
This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and CreutzfieldJacob.
Smith, David K. J. Chem. Educ. 2005, 82, 393.
Drugs / Pharmaceuticals |
Noncovalent Interactions |
Medicinal Chemistry |
Nanotechnology |
Proteins / Peptides
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
A PDR Problem for Sophomore Organic Students  Rosa Betancourt
This article contains a series of questions that guide a short investigation of the chemistry of nonsteroidal antiinflammatory drugs.
Betancourt-Perez, Rosa. J. Chem. Educ. 1999, 76, 1101.
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Solutions / Solvents |
Applications of Chemistry
Enzyme-Linked Antibodies: A Laboratory Introduction to the ELISA  Gretchen L. Anderson and Leo A. McNellis
A fast and economical laboratory exercise is presented that qualitatively demonstrates the power of enzyme-linked antibodies to detect a specific antigen. Although ELISAs are commonly used in disease diagnosis in clinical settings, this application uses biotin, covalently attached to albumin, to take advantage of readily available reagents and avoids problems associated with potentially pathogenic antigens.
Anderson, Gretchen L.; McNellis, Leo A. J. Chem. Educ. 1998, 75, 1275.
Enzymes |
Nonmajor Courses |
Medicinal Chemistry
Risks and Chemical Substances  Blumberg, Avrom A.
We are exposed to about 50 thousand of the 12 million different substances that chemists have identified. This paper looks at how we become exposed within our homes, examine three important ways in which we identify and evaluate hazardous substances, and try to suggest a rational picture of the risks we face.
Blumberg, Avrom A. J. Chem. Educ. 1994, 71, 912.
Medicinal Chemistry
Teaching bioorganic chemistry: An introductory course  Dugas, Hermann
Bioorganic chemistry could be defined as a discipline that is essentially concerned with using the tools of organic chemistry to understand biochemical processes.
Dugas, Hermann J. Chem. Educ. 1992, 69, 268.
Bioorganic Chemistry |
Catalysis |
Biological Cells |
Proteins / Peptides |
Medicinal Chemistry
Advice from Allied Health faculty to chemistry faculty  Dever, David F.
Finding out what the different health professions would like to see from undergraduate chemistry programs.
Dever, David F. J. Chem. Educ. 1991, 68, 763.
Medicinal Chemistry |
Nuclear / Radiochemistry |
Nutrition |
Vitamins |
Gases
A syllabus for a two-semester chemistry course for health professions: Report of the committee on chemical education for the health professions  Daly, John M.; Sarquis, Jerry L.
Outline of a two-semester chemistry course for health professions.
Daly, John M.; Sarquis, Jerry L. J. Chem. Educ. 1987, 64, 699.
Nonmajor Courses |
Medicinal Chemistry
Enzyme technology: A practical topic in basic chemical education   Grunwald, Peter
This article elucidates how a new important field of development and research like biotechnology can be integrated into a normal chemistry course.
Grunwald, Peter J. Chem. Educ. 1986, 63, 775.
Enzymes |
Catalysis |
Enrichment / Review Materials |
Biotechnology
Consumer applications of chemical principles: Drugs  Hill, John W.; Jones, Susan M.
Acid-base chemistry of drugs (nicotine, cocaine, and aspirin), general anesthesia (nitrous oxide, enflurane, isoflurane, halothane), local anesthetics (procaine, lidocaine, cocaine), and intravenous anesthetics (thiopental, ketamine hydrochloride, phencyclidine).
Hill, John W.; Jones, Susan M. J. Chem. Educ. 1985, 62, 328.
Consumer Chemistry |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Acids / Bases |
Applications of Chemistry
Methemoglobinemia: An illness caused by the ferric state  Senozan, N. M.
Hemoglobin's ability to carry oxygen depends on the iron being in the +2 state; methemoglobinemia involves the oxidation of hemoglobin iron to the +3 state.
Senozan, N. M. J. Chem. Educ. 1985, 62, 181.
Proteins / Peptides |
Enzymes |
Medicinal Chemistry |
Oxidation / Reduction |
Oxidation State
On the nature of cyanide poisoning  Labianca, Dominick A.
The sources, mechanism, and treatment of cyanide poisoning.
Labianca, Dominick A. J. Chem. Educ. 1979, 56, 788.
Toxicology |
Medicinal Chemistry
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
Papain as an enzyme catalyst in undergraduate organic chemistry  Abernethy, John Leo; Kientz, Marvin
A rather large number of papain-catalyzed reactions can be selected for use in undergraduate organic laboratory work.
Abernethy, John Leo; Kientz, Marvin J. Chem. Educ. 1959, 36, 582.
Enzymes |
Catalysis
Enzymes and metaphor  Asimov, Isaac
Asimov provides a series of metaphors useful in helping students to understand the action of enzymes and catalysts in general.
Asimov, Isaac J. Chem. Educ. 1959, 36, 535.
Enzymes |
Catalysis