TIGER

Journal Articles: 19 results
Thermal Analysis of Plastics  Teresa D'Amico, Craig J. Donahue, and Elizabeth A. Rais
Students interpret previously recorded scans generated by differential scanning calorimetry and thermal gravimetric analysis to investigate a polypropylene dog bone, a polyethylene terephthalate pop bottle, the plastics in automobile head- and taillights, fishing line and a tea bag, and the rubber tread of an automobile tire.
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A. J. Chem. Educ. 2008, 85, 404.
Materials Science |
Polymerization |
Thermal Analysis
Gifts from Mother Earth—The Good, the Bad, and the Ugly  Sabine Heinhorst and Gordon C. Cannon
Recent articles from the journal Nature that deal with good, bad, and ugly gifts from Mother Earth are described.
Heinhorst, Sabine; Cannon, Gordon C. J. Chem. Educ. 2006, 83, 196.
Biosynthesis |
Biotechnology |
Natural Products |
Nutrition |
Plant Chemistry |
Polymerization |
Proteins / Peptides
A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory  George D. Bennett
Based on a technology that won a Presidential Green Chemistry Challenge Award, this experiment involves the thermal polymerization of aspartic acid and subsequent hydrolysis to give sodium poly(aspartate). The procedure is suitable for introducing students to the important topic of polymers and for illustrating several of the principles of green chemistry.
Bennett, George D. J. Chem. Educ. 2005, 82, 1380.
Green Chemistry |
Synthesis |
Industrial Chemistry |
Natural Products |
Polymerization |
Proteins / Peptides
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
Hands-on Classroom Photolithography Laboratory Module To Explore Nanotechnology  Scott J. Stelick, William H. Alger, Jesse S. Laufer, Anna M. Waldron, and Carl A. Batt
Teaching nanotechnology in the high school and undergraduate environment is a challenge given the typical expense of instruments used to create micro- and nano-sized devices. To meet this challenge, a portable optical reduction stepper was designed, fabricated, and optimized for use in classrooms. This unique system was designed to provide a safe, hands-on experience for students to create microscale circuits using photolithography. Students are able to design, fabricate, and test a circuit with dimensions as small as 100 mm.
Stelick, Scott J.; Alger, William H.; Laufer, Jesse S.; Waldron, Anna M.; Batt, Carl A. J. Chem. Educ. 2005, 82, 1361.
Applications of Chemistry |
Enrichment / Review Materials |
Nanotechnology |
Polymerization |
Undergraduate Research
Polymers (Oxford Chemistry Primers No. 85) (David Walton and J. Phillip Lorimer)  John H. Shibata
Although the title suggests a broad, general coverage of polymers, in reality this book focuses primarily on synthesis and the macroscopic properties of polymers. A significant portion of the book emphasizes practical considerations of polymers┬Łcommercial aspects determined by the properties of polymers and the industrial processes for polymer synthesis and three-dimensional network formation. In many cases, specific polymer types and materials are described in detail. The concreteness of explicit examples to illustrate the principles of polymerization and the properties of networks and functional polymers are appropriate for readers seeking a practical introduction to polymers.
Shibata, John H. J. Chem. Educ. 2005, 82, 533.
Polymerization |
Synthesis
Differential scanning calorimetry study of the cross-linking of styrene and an unsaturated polyester: The chemistry of canoe manufacture.  Vebrel, Joel; Grohens, Yves; Kadmiri, Abderazak; Gowling, Eric W.
An activity geared toward a course where experiments are designed to investigate the preparation of materials, the properties essential to understanding their formation, and the optimization of their application.
Vebrel, Joel; Grohens, Yves; Kadmiri, Abderazak; Gowling, Eric W. J. Chem. Educ. 1993, 70, 501.
Materials Science |
Polymerization |
Reactions |
Calorimetry / Thermochemistry
Nylon 6 - A simple, safe synthesis of a tough commercial polymer  Mathias, Lon J.; Vaidya, Rajeev A.; Canterberry, J. B.
An improved procedure for the synthesis of Nylon 6 that is easier, safer, and gives a product with impressive strength.
Mathias, Lon J.; Vaidya, Rajeev A.; Canterberry, J. B. J. Chem. Educ. 1984, 61, 805.
Polymerization |
Synthesis
Competency-based modular experiments in polymer science and technology  Pearce, Eli M.; Wright, Carl E.; Bordoloi, Binoy K.
15 modular experiments in polymer science are listed; one of these is presented in detail.
Pearce, Eli M.; Wright, Carl E.; Bordoloi, Binoy K. J. Chem. Educ. 1980, 57, 375.
Polymerization
Ethylene: The organic chemical industry's most important building block  Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E.
The sources, chemistry, and industrial uses of ethylene.
Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E. J. Chem. Educ. 1979, 56, 385.
Alkenes |
Industrial Chemistry |
Applications of Chemistry |
Polymerization
Polymerization as a model chain reaction  Morton, Maurice
The building of long chain macromolecules offers the best opportunity for the study of chain reactions and the free radical mechanism.
Morton, Maurice J. Chem. Educ. 1973, 50, 740.
Conferences |
Professional Development |
Polymerization |
Reactions |
Free Radicals |
Kinetics |
Mechanisms of Reactions
Non-conventional photochemical imaging processes  Sahyun, M. R. V.
Considers the history and development of non-conventional photochemical imaging processes as well as the mechanisms of the photochemical formation of dyes, photochromism, and photopolymerization.
Sahyun, M. R. V. J. Chem. Educ. 1973, 50, 88.
Photochemistry |
Dyes / Pigments |
Applications of Chemistry |
Polymerization
Preparation of terephthaloyl chloride: Prelude to ersatz Nylon  Rose, Norman C.
Describes the preparation of terephthaloyl chloride, from which nylon may be generated.
Rose, Norman C. J. Chem. Educ. 1967, 44, 283.
Synthesis |
Polymerization
Preparation and crosslinking of an unsaturated polyester: An organic chemistry experiment  Stevens, M. P.
Unsaturated polyesters are ideally suited for introducing students to polymer chemistry in the laboratory because they are easy to prepare, the use both condensation and addition polymerization, and they serve to demonstrate the techniques involved in preparing the most widely used polymers.
Stevens, M. P. J. Chem. Educ. 1967, 44, 160.
Polymerization |
Esters
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Polymer synthesis in the undergraduate organic laboratory  Sorenson, Wayne R.
Presents a series of experiments on polymer synthesis for the undergraduate organic laboratory.
Sorenson, Wayne R. J. Chem. Educ. 1965, 42, 8.
Synthesis |
Polymerization |
Reactions |
Mechanisms of Reactions
Polystyrene┬ŁA multistep synthesis: For the undergraduate organic chemistry laboratory  Wilen, Samuel H.; Kremer, Chester B.; Waltcher, Irving
Describes a multistep synthesis in which polystyrene is synthesized from benzene.
Wilen, Samuel H.; Kremer, Chester B.; Waltcher, Irving J. Chem. Educ. 1961, 38, 304.
Polymerization |
Synthesis
Linear polymerization and synthetic fibers  Moncrieff, Robert W.
Examines early research in polymers, the synthesis of polyesters and polyamides, the polymerization of hydrocarbons, and condensation and addition polymerization.
Moncrieff, Robert W. J. Chem. Educ. 1954, 31, 233.
Polymerization
The mechanisms of the reactions of aliphatic hydrocarbons  Schmerling, Louis
Examines the formation of carbonium ions and free radicals, the polymerization of olefins, hydrogen-halogen exchange, the condensation of haloalkanes with alkenes, the alkylation of paraffins, the condensation of paraffins with chloroolefins, the cracking of paraffins and olefins, and the isomerization of paraffins.
Schmerling, Louis J. Chem. Educ. 1951, 28, 562.
Mechanisms of Reactions |
Alkanes / Cycloalkanes |
Free Radicals |
Polymerization