TIGER

Journal Articles: 19 results
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Nomenclature Made Practical: Student Discovery of the Nomenclature Rules  Michael C. Wirtz, Joan Kaufmann, and Gary Hawley
Presents a method to teach chemical nomenclature to students in an introductory chemistry course that utilizes the discovery-learning model. Inorganic compounds are grouped into four categories and introduced through separate activities interspersed throughout the first semester to provide context and avoid confronting the student with all of the nomenclature rules at once.
Wirtz, Michael C.; Kaufmann, Joan; Hawley, Gary. J. Chem. Educ. 2006, 83, 595.
Nomenclature / Units / Symbols |
Nonmetals |
Student-Centered Learning
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
The Formula for Ammonia Monohydrate  Stephen J. Hawkes
The reality of NH4OH was argued in J. Chem. Educ. and elsewhere a decade ago. Further evidence is now available. My colleague Darrah Thomas has calculated the geometry and bond lengths of H5NO using Gaussian. The calculation was done using the D95 basis set and the B3LYP method.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1569.
Covalent Bonding
Etymology as an Aid to Understanding Chemistry Concepts  Nittala S. Sarma
Recognition of word roots and the pattern of evolution of scientific terms can be helpful in understanding chemistry concepts (gaining knowledge of new concepts represented by related terms). The meaning and significance of various etymological roots, occurring as prefixes and suffixes in technical terms particularly of organic chemistry, are explained in a unified manner in order to show the connection of various concepts vis  vis the terms in currency. The meanings of some special words and many examples are provided.
Sarma, Nittala S. J. Chem. Educ. 2004, 81, 1437.
Nomenclature / Units / Symbols
Inorganic Nomenclature   David Shaw
Drill-and-practice exercises in naming and writing formulas for ionic and covalent inorganic compounds.
Shaw, David. J. Chem. Educ. 2003, 80, 711.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Ionization or Dissociation?  Emeric Schultz
The use of the terms Dissociation and Ionization in the teaching of chemistry is discussed. It is suggested that the term dissociation, and what it suggests in terms of ordinary language, is inappropriate when used in certain contexts. Since an alternate and more physically correct term, specifically ionization, is available for these contexts, it is argued that this term be used consistently in these contexts.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 868.
Equilibrium |
Nomenclature / Units / Symbols
Teaching inorganic nomenclature: A systematic approach.  Lind, Gerhard.
Convenient flow charts for naming inorganic compounds.
Lind, Gerhard. J. Chem. Educ. 1992, 69, 613.
Nomenclature / Units / Symbols
Introduction to chemical nomenclature  Friedstein, Harriet

Friedstein, Harriet J. Chem. Educ. 1981, 58, 414.
Nomenclature / Units / Symbols
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
Numbers in nomenclature  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Examines how multiplying affixes are used, particularly in inorganic nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 49.
Nomenclature / Units / Symbols
Lexicon of international and national units (Clason, W. E.)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1964, 41, 519.
Nomenclature / Units / Symbols
A suggested convention for the representation of ionic substances  Sunderwirth, Stanely G.
The author suggests conventions for the representation of ionic substances that may prove less confusing for introductory students.
Sunderwirth, Stanely G. J. Chem. Educ. 1957, 34, 520.
Nomenclature / Units / Symbols
Letters to the editor  Weiner, Samuel
Discusses some of the semantic confusions that plague teaching in chemistry.
Weiner, Samuel J. Chem. Educ. 1955, 32, 646.
Nomenclature / Units / Symbols