TIGER

Journal Articles: 67 results
Guitar Strings as Standing Waves: A Demonstration  Michael Davis
This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization.
Davis, Michael. J. Chem. Educ. 2007, 84, 1287.
Atmospheric Chemistry |
Atomic Properties / Structure |
Atomic Spectroscopy
The Origin of the s, p, d, f Orbital Labels  William B. Jensen
Traces the origins of the s, p, d, and f orbital labels.
Jensen, William B. J. Chem. Educ. 2007, 84, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
The Meaning of d-Orbital Labels  Guy Ashkenazi
Orbital labels are the angular part of the wave function, expressed in Cartesian coordinates. The mathematical relation between the labels and the shapes of the orbitals is discussed.
Ashkenazi, Guy. J. Chem. Educ. 2005, 82, 323.
Atomic Properties / Structure |
Transition Elements |
Quantum Chemistry
The Periodic Table as a Mnemonic Device for Writing Electronic Configurations  Suzanne T. Mabrouk
Method for using the periodic table as a mnemonic device for writing electronic configurations.
Mabrouk, Suzanne T. J. Chem. Educ. 2003, 80, 894.
Atomic Properties / Structure |
Nonmajor Courses |
Periodicity / Periodic Table
Response to Lowe's Potential-Energy-Only Models  Lowe, John P.
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Lowe, John P. J. Chem. Educ. 2002, 79, 430.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Lowe's Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 429.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Example of buffering power in deviations of the pH of sodium acetate from calculated values.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 29.
Acids / Bases |
Carboxylic Acids |
pH |
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Putting UV-Sensitive Beads to the Test  Terre Trupp
Explores the temperature behavior of UV-sensitive beads and investigates the effectiveness of sunscreens.
Trupp, Terre. J. Chem. Educ. 2001, 78, 648A.
Atomic Properties / Structure |
Kinetics |
Applications of Chemistry |
Consumer Chemistry |
Photochemistry
A Dramatic Flame Test Demonstration  Kristin A. Johnson and Rodney Schreiner
Spraying a methanol / salt solution into the flame of a Meker burner to produce a large, brightly colored flame.
Johnson, Kristin A.; Schreiner, Rodney. J. Chem. Educ. 2001, 78, 640.
Atomic Properties / Structure |
Atomic Spectroscopy
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
The Gravity of the Situation  Damon Diemente
This article presents a few calculations demonstrating that gravitational attraction between atoms is many orders of magnitude weaker than the gravitational attraction between Earth and an atom, and that the gravitational attraction between two ions is many orders of magnitude weaker than the electromagnetic attraction between them.
Diemente, Damon. J. Chem. Educ. 1999, 76, 55.
Atomic Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Experimental 4s and 3d Energies in Atomic Ground States  James L. Bills
A new definition is given for the effective charge Zf. HF orbital energies e4s and e3d are used in concert with I4s and I3d to answer four questions: Why does the 4s sublevel fill before 3d? Why is ionization easier for 4s than 3d? When 4s23dn has e3d < e4s, why doesn't 4s23dn -> 4s13dn+1? Why are Cr and Cu each 4s13dn+1 instead of 4s23dn?
Bills, James L. J. Chem. Educ. 1998, 75, 589.
Atomic Properties / Structure
The Crucial Role of Kinetic Energy in Interpreting Ionization Energies  Frank Rioux and Roger L. DeKock
The experimental ratio of the ionization energies of H and He is 1.81. The authors show that it is not correct to interpret this ratio using a classical Coulombic potential energy model. Rather a quantum mechanical model is required in which both kinetic and potential energy play a role.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 1998, 75, 537.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
An Improved Method for Students' Flame Tests in Qualitative Analysis  William D. Bare, Tom Bradley, and Elizabeth Pulliam
A new method for flame tests to be performed by students is presented. The method involves the use of a hot wire to vaporize the sample,which is subsequently drawn into the flame via the burner air vent.
William D. Bare, Tom Bradley, and Elizabeth Pulliam. J. Chem. Educ. 1998, 75, 459.
Atomic Properties / Structure |
Atomic Spectroscopy
Getting Close with the Instructional Scanning Tunneling Microscope  Carl Steven Rapp
This state-of-the-art instrumentation is making it possible for students to actually view atoms in their own classroom. What is truly amazing, however, is that the ISTM can be set up and atomic resolution images obtained in about an hour.
Rapp, Carl Steven. J. Chem. Educ. 1997, 74, 1087.
Instrumental Methods |
Atomic Properties / Structure |
Nanotechnology |
Surface Science |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
Dymystification at What Cost? (re J. Chem. Educ. 1996, 73, 617 and 627)  R. J. Gillespie, J. N. Spencer, R. S. Moog
Rationale for using Allen's scale of electronegativities.
Gillespie, R. J.; Spencer, J. N.; Moog, R. S. . J. Chem. Educ. 1997, 74, 480.
Atomic Properties / Structure
Dymystification at What Cost? (re J. Chem. Educ. 1996, 73, 617 and 627)  Eric Scerri
Errors and questionable rationale for using Allen's scale of electronegativities.
Scerri, Eric. J. Chem. Educ. 1997, 74, 480.
Atomic Properties / Structure
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics
Some Analogies for Teaching Atomic Structure at the High School Level  Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel
Analogies for orbitals, Hund's rule, and the four quantum numbers.
Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel J. Chem. Educ. 1994, 71, 733.
Atomic Properties / Structure |
Quantum Chemistry
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
Rutherford: Exploring the scattering of alpha particles.  Rittenhouse, Robert C.
This simulation permits students to design and implement scattering experiments of the sort performed by Rutherford, Geiger, and Marsden.
Rittenhouse, Robert C. J. Chem. Educ. 1992, 69, 637.
Atomic Properties / Structure
Chem 1 concept builder (Lower, Steve with Instructional Software)  Hair, Sally R.
A review of a software package designed for tutorial and drill.
Hair, Sally R. J. Chem. Educ. 1991, 68, A19.
Acids / Bases |
Oxidation / Reduction |
Stoichiometry |
Atomic Properties / Structure
Developmental instruction: Part II. Application of the Perry model to general chemistry  Finster, David C.
The Perry scheme offers a framework in which teachers can understand how students make meaning of their world, and specific examples on how instructors need to teach these students so that the students can advance as learners.
Finster, David C. J. Chem. Educ. 1991, 68, 752.
Learning Theories |
Atomic Properties / Structure |
Chemometrics |
Descriptive Chemistry
The correct interpretation of Hund's rule as applied to "uncoupled states" orbital diagrams  Campbell, Mark L.
The application of Hund's rule by general chemistry students is appropriate as long as Hund's rule is interpreted correctly.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 134.
Atomic Properties / Structure |
Quantum Chemistry
How to get more from ionization energies in the teaching of atomic structure  Mirone, Paolo
A wealth of experimental data could be exploited more extensively and profitably than what is presently done in the teaching of atomic structure.
Mirone, Paolo J. Chem. Educ. 1991, 68, 132.
Atomic Properties / Structure |
Periodicity / Periodic Table
Magnetic marbles as teaching aids  Hill, John W.
Magnetic marbles are valuable teaching aids for teachers who have steel chalkboards in their classroom.
Hill, John W. J. Chem. Educ. 1990, 67, 320.
Atomic Properties / Structure |
Covalent Bonding |
Ion Exchange
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The discovery of the electron, proton, and neutron  Peake, Barrie M.
Brief history of the discovery of the electron, proton, and neutron.
Peake, Barrie M. J. Chem. Educ. 1989, 66, 738.
Atomic Properties / Structure
The historic atom: From d to q  Smith, Richard
A Styrofoam model of the atom that has been used to show middle and high school students the historical development of the atomic model.
Smith, Richard J. Chem. Educ. 1989, 66, 637.
Atomic Properties / Structure
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Introduction to atomic structure: Demonstrations and labs  Ciparick, Joseph D.
This paper presents a sequence of demonstrations and activities that help offer evidence to students to scaffold an understanding of atomic structure.
Ciparick, Joseph D. J. Chem. Educ. 1988, 65, 892.
Atomic Properties / Structure |
Quantum Chemistry
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Is the theoretical emperor really wearing any clothes?   Sanderson, R. T.
The author asserts that general chemistry material both pushes material of doubtful value and omits material that is useful to many.
Sanderson, R. T. J. Chem. Educ. 1986, 63, 845.
Theoretical Chemistry |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Subatomic pea shooter  Smith, Bruce G.
The author presents readers with a demonstration that is useful in enticing students to learn about atomic structure and theory.
Smith, Bruce G. J. Chem. Educ. 1986, 63, 629.
Atomic Properties / Structure |
Quantum Chemistry
Revised atomic form periodic table  Strong, Frederick C., III
A circular periodic table.
Strong, Frederick C., III J. Chem. Educ. 1985, 62, 456.
Atomic Properties / Structure |
Periodicity / Periodic Table
Updating the atomic theory in general chemistry  Whitman, Mark
Presents a descriptive overview of the recent achievements that have furthered the understanding of atomic structure to provide instructors with the background necessary to enhance their classroom presentations.
Whitman, Mark J. Chem. Educ. 1984, 61, 952.
Atomic Properties / Structure
A simple aid for teaching the theory of atomic structure  Chiang, Hung-cheh; Tseng, Ching-Hwei
A simple game to demonstrate the Pauli exclusion principle, Hund's rule, quantum numbers, electronic energy levels, and electron configurations.
Chiang, Hung-cheh; Tseng, Ching-Hwei J. Chem. Educ. 1984, 61, 216.
Atomic Properties / Structure
A simulation of Rutherford experiment  Hau, Kit-Tai
An overhead demonstration simulating Rutherford's experiment to detect the atomic nucleus.
Hau, Kit-Tai J. Chem. Educ. 1982, 59, 973.
Atomic Properties / Structure |
Nuclear / Radiochemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
Illustrating the problem described by Heisenberg's uncertainty principle  Cosser, Ronald C.
A simple overhead projector demonstration illustrating Heisenberg's Uncertainty Principle.
Cosser, Ronald C. J. Chem. Educ. 1982, 59, 300.
Atomic Properties / Structure
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Charge and mass of the electron. An introductory experiment  Thompson, C. C.
Procedure for the electrolytic determination of the charge and mass of the electron requiring only the use of a balance and the careful recording of data.
Thompson, C. C. J. Chem. Educ. 1973, 50, 435.
Atomic Properties / Structure |
Electrochemistry |
Metals
Transparent 3-D models of electron probability distributions  McClellan, A. L.
The authors describe transparent, three-dimensional models in which regions of high electron probability seem to float in space, without definite boundaries and with the "internal" variations of probability density clearly visible.
McClellan, A. L. J. Chem. Educ. 1970, 47, 761.
Atomic Properties / Structure |
Molecular Modeling
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
On the discovery of the electron  Morrow, B. A.
Thomson's experiment resolved the controversy concerning the corpuscular or wave nature of cathode rays, while Millikan's experiment resolved the controversy concerning the continuous or discrete nature of electrical phenomena.
Morrow, B. A. J. Chem. Educ. 1969, 46, 584.
Atomic Properties / Structure
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Atomic Structure. Radioactivity. B. Nuclear Phenomena: Radioactivity  Surina, Albert A.; Alyea, Hubert N.
Demonstration include the use of an electroscope and Geiger counter in measuring radioactivity and the formation of fog in an evacuated bottle.
Surina, Albert A.; Alyea, Hubert N. J. Chem. Educ. 1967, 44, A545.
Atomic Properties / Structure |
Nuclear / Radiochemistry
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
The spectrum of atomic hydrogen: A freshman laboratory experiment  Hollenberg, J. Leland
This experiment allows more precise measurements of the wavelengths of the emission spectrum of atomic hydrogen with a spectrophotometer than those previously published.
Hollenberg, J. Leland J. Chem. Educ. 1966, 43, 216.
Atomic Spectroscopy |
Atomic Properties / Structure
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Energy level diagrams and extranuclear building of the elements  Keller, R. N.
Simplified diagrams showing the approximate order of electronic energy levels in atoms and mnemonic devices to aid in predicting electronic configurations for atoms are often misleading with respect to the actual energy of binding of the electrons in atoms and ions of the transition elements.
Keller, R. N. J. Chem. Educ. 1962, 39, 289.
Atomic Properties / Structure
Paddle-wheel Crookes tube  Campbell, J. A.
The effect in the Crookes paddle-wheel tube is the same as in the light radiometer and should be interpreted in the same way.
Campbell, J. A. J. Chem. Educ. 1961, 38, 480.
Atomic Properties / Structure
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
An aid to teaching electronic configurations of atoms  Sanderson, R. T.
This simple shelving device uses styrofoam balls to represent electrons and effectively illustrates electron configurations.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 262.
Atomic Properties / Structure
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
An electronic distinction between metals and nonmetals  Sanderson, R. T.
Presents a simple empirical rule for the fundamental properties that determine whether an element is metallic, metalloid, or nonmetallic.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 229.
Metals |
Nonmetals |
Atomic Properties / Structure |
Metalloids / Semimetals
Atomic models for a beginning course in college chemistry  Dodson, Vance H.
Describes a simple, three-dimensional models illustrating the fundamental parts of the atom.
Dodson, Vance H. J. Chem. Educ. 1956, 33, 529.
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State
Atomic structure and the photoelectric effect  Brockett, Clyde P.
The ubiquitous and inexpensive 110-volt, 2-watt neon glow lamp appears to have been overlooked as a device well suited to a brief but telling demonstration of a few key principles of atomic structure that underlie the study of electrovalence and comparative chemistry.
Brockett, Clyde P. J. Chem. Educ. 1953, 30, 498.
Atomic Properties / Structure
A space model of the periodic system of elements  Clauson, Jennie E.
Illustrates a three-dimensional model of the periodic system of elements.
Clauson, Jennie E. J. Chem. Educ. 1952, 29, 250.
Periodicity / Periodic Table |
Atomic Properties / Structure
An atomic structure model  Herron, Fred Y.
Presents the design of a physical model intended to illustrate the manner in which the electronic configurations of the various elements may be produced by adding electrons to a hydrogen atom.
Herron, Fred Y. J. Chem. Educ. 1951, 28, 473.
Atomic Properties / Structure
Atomic structure models for clay minerals  Perkins, Alfred T.
Describes the use of ceramic clay to produce atomic structure models for clay minerals.
Perkins, Alfred T. J. Chem. Educ. 1951, 28, 388.
Atomic Properties / Structure