TIGER

Journal Articles: 24 results
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know  Guinevere A. Giffin, Steven R. Boone, Renée S. Cole, Scott E. McKay, and Robert Kopitzke
Summary of the chemistry of a variety of sports and athletics; topics include golf, football, tennis, and hockey, as well as sports medicine, performance-enhancing drugs, sports supplements and drinks, and the couch potato.
Giffin, Guinevere A.; Boone, Steven R.; Cole, Renée S.; McKay, Scott E.; Kopitzke, Robert. J. Chem. Educ. 2002, 79, 813.
Consumer Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
The Other Double Helix--The Fascinating Chemistry of Starch  Robert D. Hancock and Bryon J. Tarbet
The chemistry of starch, particularly the structure of starch and starch granules.
Hancock, Robert D.; Tarbet, Bryon J. J. Chem. Educ. 2000, 77, 988.
Bioorganic Chemistry |
Carbohydrates |
Food Science |
Stereochemistry |
Applications of Chemistry |
Molecular Properties / Structure
Reply to Coulombic Models in Chemical Bonding  Smith, Derek W.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Smith, Derek W. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Coulombic Models in Chemical Bonding  Sacks, Lawrence J.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Sacks, Lawrence J. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Vanillin (the author replies)  Hocking, Martin
Additional information regarding salicylic acid.
Hocking, Martin J. Chem. Educ. 1998, 75, 1203.
Aldehydes / Ketones |
Applications of Chemistry |
Medicinal Chemistry |
Molecular Properties / Structure
Vanillin  Calloway, Dean
Incorrect structural formula for methyl salicylate.
Calloway, Dean J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Letters  
Incorrect structural formula for methyl salicylate.
J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
A simple model of an a[alpha]-helix  Hiegel, Gene A.
A simple model of an a[alpha]-helix made from a toilet tissue tube.
Hiegel, Gene A. J. Chem. Educ. 1975, 52, 231.
Molecular Properties / Structure |
Molecular Modeling
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Geometry in the beginning chemistry course  Strong, Laurence E.; Clapp, L. B.; Edwards, J. O.
Presents a series of common general chemistry questions and their answers based on a structural analysis.
Strong, Laurence E.; Clapp, L. B.; Edwards, J. O. J. Chem. Educ. 1961, 38, 530.
Molecular Properties / Structure
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Inexpensive Stuart-type molecular models  Hoover, William C.; Shriver, Duward
Describes a method for constructing Stuart-type molecular models using latex.
Hoover, William C.; Shriver, Duward J. Chem. Educ. 1961, 38, 295.
Molecular Modeling |
Molecular Properties / Structure
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
Accurate molecular models  Godfrey, John C.
Describes the construction of molecular models that rely on plastics to represents as accurately as possible all of the physical characteristics of real molecules.
Godfrey, John C. J. Chem. Educ. 1959, 36, 140.
Molecular Modeling |
Molecular Properties / Structure
Textbook errors: XIII. The nature of ionic and molecular species in sulfuric acid  Brubaker, Carl H., Jr.
Addresses misconceptions regarding the strength of sulfuric acid and the nature of ionic and molecular species present in solution.
Brubaker, Carl H., Jr. J. Chem. Educ. 1957, 34, 325.
Molecular Properties / Structure |
Solutions / Solvents |
Aqueous Solution Chemistry
Textbook errors: XIII. The nature of ionic and molecular species in sulfuric acid  Brubaker, Carl H., Jr.
Addresses misconceptions regarding the strength of sulfuric acid and the nature of ionic and molecular species present in solution.
Brubaker, Carl H., Jr. J. Chem. Educ. 1957, 34, 325.
Molecular Properties / Structure |
Solutions / Solvents |
Aqueous Solution Chemistry
New molecular models showing charge distribution and bond polarity  Sanderson, R. T.
Describes a new type of two- and three-dimensional molecular models that show charge distribution and bond polarity through the use of colors.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 195.
Molecular Modeling |
Molecular Properties / Structure
Amphoteric molecules, ions and salts  Davidson, David
It is the aim of this paper to call attention to the splendid opportunity amphoteric substances afford for the teaching of acid-base principles.
Davidson, David J. Chem. Educ. 1955, 32, 550.
Molecular Properties / Structure |
Acids / Bases |
pH |
Aqueous Solution Chemistry