TIGER

Journal Articles: 34 results
Similarity and Difference in the Behavior of Gases: An Interactive Demonstration  Guy Ashkenazi
A demonstration that concurrently exposes differences and similarities in the behavior of two different gases has been designed to bridge the gap between students' understanding at the algorithmicmacroscopic and conceptualmicroscopic levels.
Ashkenazi, Guy. J. Chem. Educ. 2008, 85, 72.
Gases |
Kinetics |
Learning Theories
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
An Inquiry-Based Chemistry Laboratory Promoting Student Discovery of Gas Laws  A. M. R. P. Bopegedera
This article describes a laboratory in which students discover the gas laws using Vernier sensors and Microsoft Excel.
Bopegedera, A. M. R. P. J. Chem. Educ. 2007, 84, 465.
Gases |
Instrumental Methods |
Physical Properties
Cp/Cv Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology  Mario Branca and Isabella Soletta
The values ? = Cp /Cv (heat capacity at a constant pressure / heat capacity at constant volume) for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of sound through these gases at room temperature using Calculator-Based Laboratory Technology.
Branca, Mario; Soletta, Isabella. J. Chem. Educ. 2007, 84, 462.
Gases |
Thermodynamics |
Physical Properties
Balloon—Toy of Many Colors  Kathryn R. Williams
Balloon-related articles previously published in JCE describe gas law experiments and demonstrations, large-scale molecular models, demonstrations of reaction rates and stoichiometry, hydrogen-filled balloon explosions, and miscellaneous laboratory uses.
Williams, Kathryn R. J. Chem. Educ. 2005, 82, 1448.
Gases |
Laboratory Equipment / Apparatus |
VSEPR Theory
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
A Methane Balloon Inflation Chamber  Curtis J. Czerwinski and Tanya J. Cordes
While several lecture demonstrations are possible using methane-filled balloons, it is often inconvenient to prepare these balloons since the pressure from standard laboratory and lecture hall gas nozzles is too low. As a solution to this problem, a methane balloon inflation chamber, prepared from a translucent 3.5-gallon pail and an aspirator or house-vacuum, provides an inexpensive and convenient method for inflating balloons in laboratories or lecture halls. Prepared in this way, methane-filled balloons can be used to demonstrate the effects of vacuum, the lifting power of low-density gases, and the explosive combustion of methane.
Czerwinski, Curtis J.; Cordes, Tanya J. J. Chem. Educ. 2005, 82, 248.
Alkanes / Cycloalkanes |
Calorimetry / Thermochemistry |
Gases |
Oxidation / Reduction |
Reactions
On the Buoyancy of a Helium-Filled Balloon  John E. Harriman
It is shown by expansion of the exponential in the barometric formula that the forces due to pressure acting on a balloon are of the form (PV/RT)Mg and that results agree with those suggested by Archimedes principle. Einstein's equivalence principal provides an answer to what balloons will do in an accelerated car.
Harriman, John E. J. Chem. Educ. 2005, 82, 246.
Atmospheric Chemistry |
Gases |
Kinetic-Molecular Theory |
Physical Properties
Carbon Dioxide Flooding: A Classroom Case Study Derived from Surgical Practice  Robert C. Kerber
The surgical opening in open-heart surgery is often flooded with carbon dioxide gas to avoid air embolisms when the heart is closed and restarted. This practice can be used in chemistry courses to illustrate concepts of gas density, solubility, and acidbase equilibria, including buffering.
Kerber, Robert C. . J. Chem. Educ. 2003, 80, 1437.
Acids / Bases |
Aqueous Solution Chemistry |
Gases |
Medicinal Chemistry |
Nonmajor Courses |
Applications of Chemistry
Why Does a Helium-Filled Balloon "Rise"?  Richard W. Ramette
The article is a lighthearted, conversational exploration of the microscopic basis for Archimedes principle. The principle is discussed in terms of molecular collisions and density gradients in a gravitational field.
Ramette, Richard W. J. Chem. Educ. 2003, 80, 1149.
Atmospheric Chemistry |
Gases |
Kinetic-Molecular Theory |
Physical Properties
Unknown Gases: Student-Designed Experiments in the Introductory Laboratory  John Hanson and Tim Hoyt
Investigation in which students must determine the identity of three unknown gases by developing their own tests.
Hanson, John; Hoyt, Tim. J. Chem. Educ. 2002, 79, 845.
Gases |
Qualitative Analysis |
Physical Properties
Determination of the Universal Gas Constant, R. A Discovery Laboratory  David B. Moss and Kathleen Cornely
Discovery laboratory in which groups of students collect oxygen, hydrogen, and nitrogen gas over water and determine the value of the universal gas constant, R, using the ideal gas law.
Moss, David B.; Cornely, Kathleen. J. Chem. Educ. 2001, 78, 1260.
Gases
A Demonstration of Ideal Gas Principles Using a Football  William D. Bare and Lester Andrews
A class demonstration and cooperative learning activity in which the ideal gas law is applied to determine the volume of a football is described. The mass of an air-filled football is recorded at two or more pressures, and students are asked to use these data to solve problems involving the volume, pressure, and mass of the football and the molecular weight of the gas in the ball.
Bare, William D.; Andrews, Lester. J. Chem. Educ. 1999, 76, 622.
Gases |
Applications of Chemistry
A Precise Method for Determining the CO2 Content of Carbonate Materials  Donald L. Pile, Alana S. Benjamin, Klaus S. Lackner, Christopher H. Wendt, and Darryl P. Butt
The design and use of a buret apparatus for CO2 gas capture and mass determination are described. The derivation of a comprehensive equation to determine the CO2 mass and percent carbonation of the material is outlined. Experimental factors such as temperature and pressure, including elevation effects, and apparatus parameters are discussed and incorporated into one general equation.
Pile, Donald L.; Benjamin, Alana S.; Lackner, Klaus S.; Wendt, Christopher H.; Butt, Darryl P. J. Chem. Educ. 1998, 75, 1610.
Laboratory Equipment / Apparatus |
Gases |
Quantitative Analysis
Gas Experiments with Plastic Soda Bottles  Patrick Kavanah and Arden P. Zipp
The construction and use of a new device to study gases is described. The device, which is made from a plastic soda bottle and an automobile tire valve, can be used to demonstrate that air has mass, find the mass of the "evacuated" device, determine the molar mass of air and other gases, investigate the pressure-volume relationship, and build a cloud chamber.
Kavanah, Patrick; Zipp, Arden P. J. Chem. Educ. 1998, 75, 1405.
Gases |
Laboratory Equipment / Apparatus
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Experimentally Determining the Molar Mass of Carbon Dioxide Using a Mylar Balloon  Barbara Albers Jackson and David J. Crouse
The molar mass of carbon dioxide was experimentally determined using a Mylar balloon. Mylar balloons are lightweight, have a fixed definite volume, and require minimal additional pressure for inflation. Using the Ideal Gas Equation, the number of moles of air in the balloon was calculated.
Jackson, Barbara Albers; Crouse, David J. J. Chem. Educ. 1998, 75, 997.
Gases |
Physical Properties
Oxygen from Hydrogen Peroxide: An Experimental Modification  James H. Burness
This paper describes a simple modification to the generation of oxygen gas experiment which eliminates the need for a pencil coated with petroleum jelly and dry yeast. This elimination not only prevents falling pieces of yeast from prematurely starting the reaction, but at the same time makes the reaction faster and simplifies cleanup.
J. Chem. Educ. 1996, 73, 851.
Laboratory Equipment / Apparatus |
Gases |
Microscale Lab
LIMSport (II): Use of the Interfaced Balance for Pressure Measurements, Streamlined Syntheses, and Titrations  Vitz, Ed
145. LIMSport facilitates direct acquisition of data from a variety of sensors into a spreadsheet.. This article explores the use of LIMSport in understanding gas laws.
Vitz, Ed J. Chem. Educ. 1993, 70, 63.
Gases |
Instrumental Methods
Gas reactions in plastic bags: Relating laboratory observations to the atomic-molecular model  Robinson, Maurice; Barrow, Gordon M.
Carrying out chemical reactions in Ziplock bags to investigate a variety of chemical concepts.
Robinson, Maurice; Barrow, Gordon M. J. Chem. Educ. 1992, 69, 1026.
Kinetic-Molecular Theory |
Gases |
Reactions |
Acids / Bases |
Oxidation / Reduction |
Photochemistry |
Atmospheric Chemistry |
Physical Properties
Hot and cold running methane  Stamm, Daniel M.
A series of interesting demonstrations involving liquid nitrogen.
Stamm, Daniel M. J. Chem. Educ. 1992, 69, 762.
Gases
Graham's law: Defining gas velocities  Kenney, Tom
Three alternatives for defining gas velocities.
Kenney, Tom J. Chem. Educ. 1990, 67, 871.
Gases |
Kinetic-Molecular Theory
Two fundamental constants  McNaught, Ian J.; Peckham, Gavin D.
Experiment to produce accurate values for both the absolute zero of temperature and the gas constant.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1987, 64, 999.
Gases
Chemical knowledge versus conventional "wisdom"   Steffel, Margaret J.
A question about the physical properties of gases that rewards students with some knowledge of aviation.
Steffel, Margaret J. J. Chem. Educ. 1986, 63, 317.
Gases
Invisible water: A gas density demonstration  Maciel, Richard P.
Demonstrating the density of 1,1,2-trichloro-1,2,2-trifluoroethane (TTE), whose density is about six times that of air.
Maciel, Richard P. J. Chem. Educ. 1985, 62, 153.
Gases |
Physical Properties
Cooking with chemistry  Grosser, Arthur E.
Two demonstrations involving cooking eggs and suggestions for many more examples of cooking that illustrate important principles of chemistry. From the "State-of-the-Art Symposium for Chemical Educators: Chemistry of the Food Cycle".
Grosser, Arthur E. J. Chem. Educ. 1984, 61, 362.
Food Science |
Gases |
Acids / Bases |
Equilibrium |
Kinetics
Enduring distributions that deny Boltzmann  Nash, Leonard K.
Examines two practical steady- state distributions: the atmosphere and its lapse rate and the ocean and its vertical quasi-uniformity.
Nash, Leonard K. J. Chem. Educ. 1984, 61, 22.
Atmospheric Chemistry |
Gases
The use of the Warnier-Orr program design method in the preparation of general chemistry tutorials   Hach, Edwin E., Jr.
39. In this article, a modified Warnier-Orr approach is illustrated for a computer tutorial involving ideal gas calculations.
Hach, Edwin E., Jr. J. Chem. Educ. 1983, 60, 348.
Gases |
Chemometrics
Spectacular gas density demonstration using methane bubbles   Snipp, Robert; Mattson, Bruce; Hardy, Winters
An unforgettable demonstration of the relative densities of gases can be performed by creating giant methane bubbles with the aid of a small funnel and toy soap bubble solution.
Snipp, Robert; Mattson, Bruce; Hardy, Winters J. Chem. Educ. 1981, 58, 354.
Physical Properties |
Gases
Bicarbonate in Alka-Seltzer: A general chemistry experiment  Peck, Larry; Irgolic, Kurt; O'Connor, Rod
Determining the percentage bicarbonate ion by mass in Alka-Seltzer.
Peck, Larry; Irgolic, Kurt; O'Connor, Rod J. Chem. Educ. 1980, 57, 517.
Quantitative Analysis |
Gases |
Stoichiometry |
Acids / Bases
Effective insect fogging - The origin of sea breezes - Hot air balloons  Plumb, Robert C.
Three applications of the changes in pressure or volume of a gas when its temperature is changed.
Plumb, Robert C. J. Chem. Educ. 1975, 52, 104.
Gases |
Applications of Chemistry
Questions [and] Answers  Campbell, J. A.
Eight questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 624.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry |
Gases
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry