TIGER

Journal Articles: 31 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
Response to Lowe's Potential-Energy-Only Models  Lowe, John P.
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Lowe, John P. J. Chem. Educ. 2002, 79, 430.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Lowe's Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 429.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Example of buffering power in deviations of the pH of sodium acetate from calculated values.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 29.
Acids / Bases |
Carboxylic Acids |
pH |
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Why Gold and Copper Are Colored but Silver Is Not  Ariel H. Guerrero, Héctor J. Fasoli, and José Luis Costa
Interpretation of the yellow color of gold based on an adequate external electronic configuration (s1d10/s2d9) and s and d sublevels close enough to allow transition between them to proceed significantly.
Guerrero, Ariel H.; Fasoli, Hctor J.; Costa, Jos Luis. J. Chem. Educ. 1999, 76, 200.
Periodicity / Periodic Table |
Metals |
Descriptive Chemistry
Using Balls of Different Sports To Model the Variation of Atomic Sizes  Gabriel Pinto
In this article, an analogy is described about the order of magnitude of the variation of atomic sizes that can be used for discussion in introductory chemistry classes. The order of magnitude of this variation, involving microscopic magnitudes, is difficult for students to imagine.
Pinto, Gabriel. J. Chem. Educ. 1998, 75, 725.
Atomic Properties / Structure
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
Periodic properties in a family of common semiconductors: Experiments with light emitting diodes  Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B.
The prevalence of LED's and their low cost make LED's ideal for classroom demonstrations or laboratory experiments showing the connection between periodic trends in physical/chemical properties and a common high tech device.
Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B. J. Chem. Educ. 1992, 69, 151.
Periodicity / Periodic Table |
Semiconductors
Simulation of Rutherford's experiment  Bishop, Carl B.
Apparatus and procedure to simulate Rutherford's classic gold foil experiment.
Bishop, Carl B. J. Chem. Educ. 1990, 67, 889.
Atomic Properties / Structure
Applying KC?DISCOVERER in the introductory chemistry laboratory  Furstenau, Ronald P.; Amend, John R.
115. Bits and pieces, 44. KC?DISCOVERER contains a wide variety of physical and chemical properties of the elements.
Furstenau, Ronald P.; Amend, John R. J. Chem. Educ. 1990, 67, 500.
Periodicity / Periodic Table
A formula for calculating atomic radii of metals  Ping, Mei; Xiubin, Lei; Yuankai, Wen
In this paper, the authors present a theoretical formula for calculating metallic radii.
Ping, Mei; Xiubin, Lei; Yuankai, Wen J. Chem. Educ. 1990, 67, 218.
Atomic Properties / Structure |
Metals
Designing a periodic table: A laboratory approach  Irons, Mary E.
What follows is a laboratory approach to help students gain some insight to the relationship of the elements on the table and also to help students review the scientific method.
Irons, Mary E. J. Chem. Educ. 1989, 66, 155.
Periodicity / Periodic Table
Periodic law (Curry,E.; Chandler, J.; Mackay, L.)  Lechner, Joseph H.; Gardlund, Sharon L.
Two reviews of a software program which serves as a data base for 20 items of information on the first 103 elements.
Lechner, Joseph H.; Gardlund, Sharon L. J. Chem. Educ. 1988, 65, A333.
Periodicity / Periodic Table |
Descriptive Chemistry
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
Features associated with chemical elements (FACES)  Larsen, Russell D.
72. Chemical education is in need of new and better visual representation for correlating and condensing the vast amount of experimental data that has been accumulated for chemical and physical phenomenon. The periodic table in this note represents these properties through various facial features, allowing for an identification of patterns in the table.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 505.
Periodicity / Periodic Table
Building a periodic table  Fowler, Linda S.
The activity described in this paper yielded comments such as, "I've never had so much fun taking a test. That was great" and "That lady must be crazy - that was impossible". Student understanding of periodic trends are authentically challenged and assessed in this problem.
Fowler, Linda S. J. Chem. Educ. 1981, 58, 634.
Periodicity / Periodic Table
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
High school courses  Briggs, A. G.
The author points out that students may be more accepting of chemistry content (such as the size of the atom) if they are allowed to experiment for themselves.
Briggs, A. G. J. Chem. Educ. 1969, 46, 700.
Atomic Properties / Structure
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
An electronic distinction between metals and nonmetals  Sanderson, R. T.
Presents a simple empirical rule for the fundamental properties that determine whether an element is metallic, metalloid, or nonmetallic.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 229.
Metals |
Nonmetals |
Atomic Properties / Structure |
Metalloids / Semimetals
A new periodic chart with electronegativities  Sanderson, R. T.
This paper describes a new chart that has been designed to portray clearly and vividly patterns in relative atomic radius, electronic configuration, and electronegativity.
Sanderson, R. T. J. Chem. Educ. 1956, 33, 443.
Periodicity / Periodic Table |
Atomic Properties / Structure
A new periodic table based on the energy sequence of atomic orbitals  Walker, W. R.; Curthoys, G. C.
Since the theory of atomic and molecular orbitals has proven to be of such value in interpreting the data of inorganic chemistry, it is hoped that a new periodic table based on the energy sequence of atomic orbitals will be an aid to the further systematizing of chemical knowledge.
Walker, W. R.; Curthoys, G. C. J. Chem. Educ. 1956, 33, 69.
Periodicity / Periodic Table |
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
A periodic table showing the relative sizes of elements and their ions  Klingenberg, Joseph; Springman, Leroy
Describes a periodic chart representing the relative sizes of atoms and ions that was constructed by a senior undergraduate.
Klingenberg, Joseph; Springman, Leroy J. Chem. Educ. 1952, 29, 81.
Atomic Properties / Structure |
Periodicity / Periodic Table