TIGER

Journal Articles: 29 results
Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents  Beverly Cochran, Deborah Lunday, and Frank Miskevich
This laboratory emphasizes that enzymes mediate the conversion of a substrate into a product and that either the concentration of product or reactant may be used to follow the course of a reaction. It does so by using an inexpensive scanner and open-source image analysis software to quantify amylase activity through the breakdown of starch and the appearance of glucose.
Cochran, Beverly; Lunday, Deborah; Miskevich, Frank. J. Chem. Educ. 2008, 85, 401.
Biosynthesis |
Carbohydrates |
Catalysis |
Enzymes |
Food Science |
Nutrition |
Quantitative Analysis |
UV-Vis Spectroscopy
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons  Ronald D┬ŁAmelia, Thomas Franks, and William F. Nirode
Differential scanning calorimetry (DSC) is a rugged, easy-to-use instrumental method for thermal analysis determinations. The work described herein discusses the use of DSC in a general chemistry laboratory course to determine thermal properties such as melting points, ?fusionH, ?fusionS, and introduce the concept of polymorphism for organic hydrocarbons.
D┬ŁAmelia, Ronald; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2007, 84, 453.
Alkanes / Cycloalkanes |
Instrumental Methods |
Physical Properties |
Thermal Analysis |
Thermodynamics |
Calorimetry / Thermochemistry
Gifts from Mother Earth—The Good, the Bad, and the Ugly  Sabine Heinhorst and Gordon C. Cannon
Recent articles from the journal Nature that deal with good, bad, and ugly gifts from Mother Earth are described.
Heinhorst, Sabine; Cannon, Gordon C. J. Chem. Educ. 2006, 83, 196.
Biosynthesis |
Biotechnology |
Natural Products |
Nutrition |
Plant Chemistry |
Polymerization |
Proteins / Peptides
Mineral Analysis of Whole Grain Total Cereal  Paul Hooker
This article describes the quantitative analysis of the elements iron, zinc, and calcium in Whole Grain Total Cereal, a cereal product that claims to contain 100% of the daily value of several vitamins and minerals. This experiment can be implemented at several instructional levels including chemistry courses for science and nonscience majors, and in more advanced chemistry courses such as quantitative or instrumental analysis.
Hooker, Paul. J. Chem. Educ. 2005, 82, 1223.
Consumer Chemistry |
Food Science |
Nutrition |
Quantitative Analysis |
UV-Vis Spectroscopy |
Nonmajor Courses
Our Everyday Cup of Coffee: The Chemistry behind Its Magic  Marino Petracco
Coffee beverages are so popular all over the world that there is hardly any need to describe them. But underlying this seemingly commonplace beverage there is a whole realm worth serious scientific study. The complexity of the raw seed matrix, made even more intricate when roasted, requires a deep understanding of its chemical nature. While coffee is not consumed for nutritional purposes, it is appreciated for its taste appeal along with its stimulating effects on mental and physical activity. The attention to quality is of paramount importance to both of these aspects to supply the customers with a pleasant and wholesome product.
Petracco, Marino. J. Chem. Educ. 2005, 82, 1161.
Colloids |
Food Science |
Natural Products |
Nutrition |
Agricultural Chemistry |
Chromatography |
Vitamins |
Consumer Chemistry
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Calories - Who's Counting?   JCE Editorial Staff
Students determine how many calories are released per gram when marshmallows and cashews burn and then compare the quantity of energy available from carbohydrates vs. fats.
JCE Editorial Staff . J. Chem. Educ. 2004, 81, 1440A.
Calorimetry / Thermochemistry |
Carbohydrates |
Lipids |
Consumer Chemistry |
Food Science |
Nutrition |
Fatty Acids
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
Iron as Nutrient and Poison  N. M. Senozan and M. P. Christiano
Iron containing compounds of the body and the ingestion and elimination of iron, the function and transport of this metal among different sites and substances of the body, and biochemical defects and nutritional habits that lead to excessive accumulation of iron and some unexpected consequences of this accumulation are described.
Senozan, N. M.; Christiano, M. P. J. Chem. Educ. 1997, 74, 1060.
Bioinorganic Chemistry |
Bioorganic Chemistry |
Food Science |
Metals |
Vitamins |
Toxicology |
Nutrition |
Applications of Chemistry |
Descriptive Chemistry
Nutrition: A Popular General Education Chemistry Course  Mathews, Frances
A course description for a popular nutrition course that includes elementary chemistry, biochemistry, and physiology. A course outline is included.
Mathews, Frances J. Chem. Educ. 1993, 70, 47.
Nutrition |
Bioenergetics |
Nonmajor Courses
The thermodynamics of home-made ice cream.  Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen.
Using the production of ice cream to teach heat capacity, viscosity, and freezing-point reduction.
Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen. J. Chem. Educ. 1992, 69, 658.
Thermodynamics |
Water / Water Chemistry |
Applications of Chemistry
The reusable heat pack   McAfee, Lyle V.; Jumper, Charles F.
A commercial product that can be used to demonstrate thermodynamic principles.
McAfee, Lyle V.; Jumper, Charles F. J. Chem. Educ. 1991, 68, 780.
Thermodynamics
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Determination of the effect of various modes of cooking on the vitamin C content of a common food, green pepper: An introductory biochemistry experiment  Johnson, Eric R.
A great laboratory experiment that examines the effects of baking, boiling, steaming, and microwaving a green pepper on the pepper's nutritional level.
Johnson, Eric R. J. Chem. Educ. 1988, 65, 926.
Nutrition |
Titration / Volumetric Analysis |
Vitamins |
Food Science |
Applications of Chemistry
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Nutrition and problem solving: Food for thought  Denio, Allen A.; Bennett, Charles R.
Calculating the number of Calories, carbohydrates, protein, and fat per dollar of various foods.
Denio, Allen A.; Bennett, Charles R. J. Chem. Educ. 1984, 61, 1076.
Nutrition |
Carbohydrates |
Proteins / Peptides |
Lipids |
Fatty Acids
Nutrition (diet) and athletics  Lineback, David R.
Nutritional requirements of athletes, energy use for various activities, carbohydrate loading, and myths and fallacies.
Lineback, David R. J. Chem. Educ. 1984, 61, 536.
Nutrition |
Bioenergetics |
Metabolism |
Calorimetry / Thermochemistry |
Carbohydrates
Weight-loss diets and the law of conservation of energy   Hill, John W.
The law of conservation of mass is has real-life relevance to those who diet to lose weight.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Metabolism |
Thermodynamics
Simulation in the chemistry classroom of decision-making processes for social issues involving chemistry  White, David H.
Simulations of a Senate subcommittee hearing a bill to ban tobacco and an FDA panel to award a research grant in the area of nutrition and food additives.
White, David H. J. Chem. Educ. 1979, 56, 600.
Vitamins |
Nutrition |
Applications of Chemistry |
Consumer Chemistry
Effects of ethanol on nutrition  Shorey, RoseAnn L.
The relationships between alcohol and obesity, malnutrition, vitamin and mineral absorption and utilization, and toxicity.
Shorey, RoseAnn L. J. Chem. Educ. 1979, 56, 532.
Alcohols |
Nutrition |
Vitamins |
Toxicology |
Applications of Chemistry |
Consumer Chemistry
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
A laboratory course for students in science-related fields  Morse, Karen W.
The authors have revised their laboratory experiences so that students see the relevance between chemistry and some potential majors: animal science, soil science, nutrition, food science, and more.
Morse, Karen W. J. Chem. Educ. 1976, 53, 316.
Food Science |
Nutrition |
Nonmajor Courses
Questions [and] Answers  Campbell, J. A.
188-192. Five biochemistry related questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 390.
Enrichment / Review Materials |
Nuclear / Radiochemistry |
Chromatography |
Gases |
Nutrition
A socially relevant problem in unit and dimension conversions  Bernstein, Stanley
An activity in which students determine the cheapest source of nutritional iron by considering a variety of food products.
Bernstein, Stanley J. Chem. Educ. 1973, 50, 65.
Nomenclature / Units / Symbols |
Nutrition |
Food Science |
Consumer Chemistry
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism