TIGER

Journal Articles: 154 results
[#94] Hold the Heat: Global Heat Retention, Global Warming and Calorimetry  Joel D. Burley and Harold S. Johnston
Students perform quantitative calorimetric measurements on samples of ice/water heated by incandescent light bulbs and by convection with room-temperature surroundings.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2008, 85, 224A.
Calorimetry / Thermochemistry
Calorimetry  JCE Editorial Staff
Lists articles describing laboratory exercises using calorimetry measurements.
J. Chem. Educ. 2008, 85, 1130.
Calorimetry / Thermochemistry
An Inexpensive Solution Calorimeter  Emma Kavanagh, Sam Mindel, Giles Robertson, and D. E. Peter Hughes
Describes the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element, that has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute.
Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter. J. Chem. Educ. 2008, 85, 1129.
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
The Chemical Adventures of Sherlock Holmes: The Serpentine Remains  Ken Shaw
This story is a chemical mystery, set in the context of Sherlock Holmes and Dr. Watson, that emphasizes qualitative analysis, descriptive chemistry, and forensics.
Shaw, Ken. J. Chem. Educ. 2008, 85, 507.
Acids / Bases |
Applications of Chemistry |
Coordination Compounds |
Calorimetry / Thermochemistry |
Forensic Chemistry |
Qualitative Analysis
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Heat Capacity of Metals and Demonstration of the Law of Dulong and Petit  Ronald P. D'Amelia, Vincent Stracuzzi, and William F. Nirode
The work described herein discusses the use of differential scanning calorimetry in a general chemistry laboratory course to determine the specific heat capacities of metals and introduce the empirical law of Dulong and Petit.
D'Amelia, Ronald P.; Stracuzzi, Vincent; Nirode, William F. J. Chem. Educ. 2008, 85, 109.
Calorimetry / Thermochemistry |
Heat Capacity |
Instrumental Methods |
Thermal Analysis
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
A Simple Calorimetric Experiment That Highlights Aspects of Global Heat Retention and Global Warming  Joel D. Burley and Harold S. Johnston
In this laboratory experiment, general chemistry students verify that heat is consumed in the melting of ice, with no increase in temperature until all the ice has melted. The fundamental calorimetric principles demonstrated by the lab results are then developed to help students better assess and understand the experimental evidence associated with global warming.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2007, 84, 1686.
Atmospheric Chemistry |
Calorimetry / Thermochemistry
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons  Ronald DAmelia, Thomas Franks, and William F. Nirode
Differential scanning calorimetry (DSC) is a rugged, easy-to-use instrumental method for thermal analysis determinations. The work described herein discusses the use of DSC in a general chemistry laboratory course to determine thermal properties such as melting points, ?fusionH, ?fusionS, and introduce the concept of polymorphism for organic hydrocarbons.
DAmelia, Ronald; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2007, 84, 453.
Alkanes / Cycloalkanes |
Instrumental Methods |
Physical Properties |
Thermal Analysis |
Thermodynamics |
Calorimetry / Thermochemistry
Thermochemical Analysis of Neutralization Reactions: An Introductory Discovery Experiment  Kenneth V. Mills and Louise W. Guilmette
Describes a guided-inquiry laboratory pedagogy in which students discover chemical concepts in the lab and the instructor uses their pooled data to guide the lecture portion of the course. This method is illustrated by an experiment that reinforces students' understanding of stoichiometry and allows them to discover neutralization reactions and thermochemistry.
Mills, Kenneth V.; Guilmette, Louise W. J. Chem. Educ. 2007, 84, 326.
Acids / Bases |
Stoichiometry |
Calorimetry / Thermochemistry |
Acids / Bases
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Molar Mass by Freezing Point Depression  Ronald P. D'Amelia, Thomas Franks, and William F. Nirode
The work described herein uses differential scanning calorimetry to determine the molar mass of three unknowns (nonvolatile organic hydrocarbons) by freezing point depression.
D'Amelia, Ronald P.; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2006, 83, 1537.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermal Analysis |
Solutions / Solvents
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Useful Work of a Process  Norman C. Craig
Acknowledgment of a flaw in the article, Lets Drive Driving Force Out of Chemistry.
Craig, Norman C. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Useful Work of a Process  Bruno Lunelli
Clarifies a potentially misleading statement in the article, Lets Drive Driving Force Out of Chemistry.
Lunelli, Bruno. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
No "Driving Forces" in General Chemistry  Evguenii I. Kozliak
A simple and easy-to-remember explanation, that precipitation of a solid and/or formation of water are driving forces of those reactions or drive them to completion, still occurs among instructors.
Kozliak, Evguenii I. J. Chem. Educ. 2006, 83, 702.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
The q/T Paradox: Which "Contains More Heat", a Cup of Coffee at 95°C or a Liter of Icewater?  Ed Vitz and Michael J. Schuman
In this demonstration, heat is removed from 10 cm3 of water at ~95C and 42 cm3 of water at ~0C by adding each to a measured sample of liquid nitrogen. The heat removed from the water boils the N2(l), and the quantity of liquid nitrogen that is evaporated by boiling is determined. The quantity of heat that was absorbed is calculated from the heat of vaporization of liquid nitrogen and found to be about 10,000 J in the case of the hot water and 25,000 J in the case of the icewater.
Vitz, Ed; Schuman, Michael J. J. Chem. Educ. 2005, 82, 856.
Calorimetry / Thermochemistry |
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
A Methane Balloon Inflation Chamber  Curtis J. Czerwinski and Tanya J. Cordes
While several lecture demonstrations are possible using methane-filled balloons, it is often inconvenient to prepare these balloons since the pressure from standard laboratory and lecture hall gas nozzles is too low. As a solution to this problem, a methane balloon inflation chamber, prepared from a translucent 3.5-gallon pail and an aspirator or house-vacuum, provides an inexpensive and convenient method for inflating balloons in laboratories or lecture halls. Prepared in this way, methane-filled balloons can be used to demonstrate the effects of vacuum, the lifting power of low-density gases, and the explosive combustion of methane.
Czerwinski, Curtis J.; Cordes, Tanya J. J. Chem. Educ. 2005, 82, 248.
Alkanes / Cycloalkanes |
Calorimetry / Thermochemistry |
Gases |
Oxidation / Reduction |
Reactions
Calories - Who's Counting?   JCE Editorial Staff
Students determine how many calories are released per gram when marshmallows and cashews burn and then compare the quantity of energy available from carbohydrates vs. fats.
JCE Editorial Staff . J. Chem. Educ. 2004, 81, 1440A.
Calorimetry / Thermochemistry |
Carbohydrates |
Lipids |
Consumer Chemistry |
Food Science |
Nutrition |
Fatty Acids
An Alternative Thermochemical Container   Robert G. Silberman
Dean Campbell suggests a clever, readily available, and simple alternative to the calorimeters described in my article. I tried his suggestion and egg cartons work well with the appropriate scale up of materials. The only advantage I see to the calorimeter I described is somewhat greater durability and need for smaller amounts of chemicals.
Silberman, Robert G. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
An Alternative Thermochemical Container  Dean J. Campbell
I was intrigued with the JCE Classroom Activity: #59 "Some Like It Hot, Some Like It Cold." I think that a polystyrene foam egg carton (or even multiple nested cartons) would be an adequate container for mixing the solutions and performing thermochemical measurements.
Campbell, Dean J. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
An Interactive Graphical Approach to Temperature Conversions  Jonathan Mitschele
Activity to demonstrate the relationship between the Fahrenheit and Celsius temperature scales by graphing measurements of English- and metric-unit thermometers.
Mitschele, Jonathan. J. Chem. Educ. 2002, 79, 1235.
Nomenclature / Units / Symbols |
Chemometrics |
Calorimetry / Thermochemistry
H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter  Irmgard K. Howard
Origin of the word enthalpy.
Howard, Irmgard K. J. Chem. Educ. 2002, 79, 697.
Thermodynamics |
Calorimetry / Thermochemistry
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
Demonstrations with Nitrocellulose: Possible Further Pedagogic Value (re J. Chem. Educ. 2000, 77, 1449)  Edward G. Senkbeil
Characteristic of explosives to have fuel and oxidizer in the same structure.
Senkbeil, Edward G. J. Chem. Educ. 2001, 78, 1596.
Descriptive Chemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Rate Law
Demonstrations with Nitrocellulose: Possible Further Pedagogic Value (re J. Chem. Educ. 2000, 77, 1449)  J. C. Jones
Characteristic of explosives to have fuel and oxidizer in the same structure.
Jones, J. C. J. Chem. Educ. 2001, 78, 1596.
Descriptive Chemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Rate Law
Beer's Law Revoked? (re J. Chem. Educ. 2001, 78, 694)  Maureen Kendrick Murphy
Question regarding absorbance versus concentration plot for buckminsterfullerene.
Murphy, Maureen Kendrick. J. Chem. Educ. 2001, 78, 1595.
Calorimetry / Thermochemistry |
Ethics |
Laboratory Computing / Interfacing |
Undergraduate Research |
UV-Vis Spectroscopy
Beer's Law Revoked? (re J. Chem. Educ. 2001, 78, 694)  Roy W. Clark
Question regarding absorbance versus concentration plot for buckminsterfullerene.
Clark, Roy W. J. Chem. Educ. 2001, 78, 1595.
Calorimetry / Thermochemistry |
Ethics |
Laboratory Computing / Interfacing |
Undergraduate Research |
UV-Vis Spectroscopy
A Simplified Method for Measuring the Entropy Change of Urea Dissolution. An Experiment for the Introductory Chemistry Lab  Charles A. Liberko and Stephanie Terry
Guided inquiry to determine values for changes in enthalpy, Gibb's free energy, and entropy for the dissolution of urea in water.
Liberko, Charles A.; Terry, Stephanie. J. Chem. Educ. 2001, 78, 1087.
Thermodynamics |
Calorimetry / Thermochemistry
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
Hell May Be Hotter Than Heaven After All (about J. Chem. Educ. 1999, 76, 503)  M. N. Berberan-Santos
Estimation of temperatures in heaven and hell based on biblical information.
Berberan-Santos, Mário N. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
A Visual Aid in Enthalpy Calculations  Sebastian G. Canagaratna
This article discusses the use of enthalpy-temperature diagrams for reactants and products as a visual aid in the teaching of reaction-enthalpy calculations. By the use of such diagrams the division of the process into a part involving a chemical reaction without a temperature change and a part involving only a temperature change is made visually concrete.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 1178.
Thermodynamics |
Calorimetry / Thermochemistry
Studying Thermally Induced Chemical and Physical Transformations in Common Synthetic Polymers: A Laboratory Project  Steven C. Hodgson, John D. Orbell, Stephen W. Bigger, and John Scheirs
A simple project is described for introducing students to some experimental procedures commonly used to measure the effects of thermal treatment on synthetic polymers. The thermally induced changes that occur in the commodity polymers low-density polyethylene (LDPE), poly(ethylene terephthalate) (PET), and poly(vinyl chloride) (PVC) are examined as a function of the time of thermal treatment in an air-circulating oven.
Hodgson, Steven C.; Orbell, John D.; Bigger, Stephen W.; Scheirs, John. J. Chem. Educ. 2000, 77, 745.
IR Spectroscopy |
Calorimetry / Thermochemistry |
Thermal Analysis |
UV-Vis Spectroscopy
Boerhaave on Fire  Damon Diemente
This article offers a selection of passages from Boerhaave's chapter on fire. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas.
Diemente, Damon. J. Chem. Educ. 2000, 77, 42.
Calorimetry / Thermochemistry |
Thermodynamics
Using TOPEX Satellite El Niño Altimetry Data to Introduce Thermal Expansion and Heat Capacity Concepts in Chemistry Courses  Harvey F. Blanck
Warm water is less dense than cool water and will float somewhat like ice, with a portion above the surface of the cooler surrounding water. The height of the bump can be used to estimate the excess thermal energy in the warmer water.
Blanck, Harvey F. J. Chem. Educ. 1999, 76, 1635.
Liquids |
Thermodynamics |
Water / Water Chemistry |
Calorimetry / Thermochemistry
The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment  Charles J. Marzzacco
The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq).
Marzzacco, Charles J. J. Chem. Educ. 1999, 76, 1517.
Calorimetry / Thermochemistry |
Catalysis
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
An Apparatus for Temperature Displays  George Papageorgiou and John Xenos
In this article, a new simple and low-cost apparatus is introduced that provides the possibility to display temperature measurements in any lecture hall. The apparatus provides analog displays. Its construction requires only simple and inexpensive materials.
Papageorgiou, George; Xenos, John. J. Chem. Educ. 1999, 76, 1094.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  Chinhyu Hur, Sally Solomon, and Christy Wetzel
Heat changes can be observed by using a culture dish and a thermometer that is projected onto a screen using an overhead projector.
Hur, Chinhyu; Solomon, Sally; Wetzel, Christy. J. Chem. Educ. 1998, 75, 51.
Calorimetry / Thermochemistry |
Solutions / Solvents |
Thermodynamics |
Laboratory Equipment / Apparatus
Heat Capacity, Body Temperature, and Hypothermia  Doris R. Kimbrough
A finger in and out of water are compared to demonstrate the difference between heat capacities and their effect on body temperature.
Kimbrough, Doris R. J. Chem. Educ. 1998, 75, 48.
Calorimetry / Thermochemistry |
Thermodynamics
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement  Mark Muyskens
Application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor.
Muyskens, Mark. J. Chem. Educ. 1997, 74, 850.
Calorimetry / Thermochemistry |
Thermal Analysis |
Thermodynamics |
Laboratory Equipment / Apparatus |
Instrumental Methods
Heat Flow vs. Cash Flow: A Banking Analogy  Charles M. Wynn, Sr.
An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction.
Wynn, Charles M. Sr. J. Chem. Educ. 1997, 74, 397.
Thermodynamics |
Calorimetry / Thermochemistry
How Efficient is a Laboratory Burner in Heating Water?  Michael P. Jansen
When a laboratory (or Bunsen) burner is used to heat water, all of the energy liberated by the burning fuel is not absorbed by the water. This article describes a procedure for determining the percentage efficiency of this common apparatus. This experiment is suitable for secondary school students who are familiar with stoichiometry , simple calorimetry, heats of reaction, collection of gas by downward displacement of water.
Jansen, Michael P. J. Chem. Educ. 1997, 74, 213.
Calorimetry / Thermochemistry
Reports from Other Journals: Gleanings from Scientific American  Paul F. Schatz
Scientific American provides a rich resource of background and general interest material for topics of chemical interest that can be used to supplement and enhance chemistry lecture and laboratory courses.
Schatz, Paul F. J. Chem. Educ. 1996, 73, A234.
Drugs / Pharmaceuticals |
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Applications of Chemistry |
Consumer Chemistry |
Laboratory Management
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
A Modified Demonstration of the Activation Energy Concept  Jin Li, Le-Sui Dai, Li-Shu You
This paper describes a modified method that can be used to present both exothermic and endothermic cases.
Li, Jin; Dai, Le-Sui; You, Li-Shu. J. Chem. Educ. 1996, 73, 948.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Laboratory Management
Home-Study Microlabs  Dietmar Kennepohl
This article presents the use of microscaled chemistry experiments for individual home study and how it can be incorporated into a course with traditional laboratory work.
Kennepohl, Dietmar. J. Chem. Educ. 1996, 73, 938.
Microscale Lab |
Solutions / Solvents |
Calorimetry / Thermochemistry |
Qualitative Analysis |
Precipitation / Solubility
Simple and Attractive Demonstraction of the Reversibility of Chemical Reactions  Celestyn M. Brozek
The reversibility of chemical reactions is demonstrated by dehydration of CuSO4  5H2O and the subsequent hydration of CuSO4. The associated heat consumption and the subsequent heat production illustrate the concept of endothermic and exothermic reactions.
J. Chem. Educ. 1996, 73, 837.
Calorimetry / Thermochemistry |
Reactions
An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
An alternative to the conventional method of calculating enthalpies of reaction is presented, using enthalpies of atomization in place of enthalpies of formation. This allows the student to see directly that the reaction enthalpies are determined by the difference in bond strengths in the reactants and products.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 631.
Calorimetry / Thermochemistry |
Thermodynamics |
Equilibrium |
Reactions |
Atomic Properties / Structure |
Stoichiometry
A Simple and Convenient Microscale Procedure for Investigation of Charles' Law  Snyder, Donald M.
Experimental procedure for establishing temperature/volume relationship for a gas and determining the value of absolute zero using very simple equipment; includes sample data and analysis.
Snyder, Donald M. J. Chem. Educ. 1995, 72, A98.
Gases |
Calorimetry / Thermochemistry |
Microscale Lab
Quick Method for Making Colored-Flame Flash Paper  Sally Solomon, Chinhyu Hur, Alan Lee, and Kurt Smith
Procedure for making for making colored-flame (and multicolored) flash paper.
Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt. J. Chem. Educ. 1995, 72, 1133.
Reactions |
Calorimetry / Thermochemistry |
Atomic Spectroscopy
Celsius to Fahrenheit--Quick and Dirty  Colin Hester
Simple algorithm for converting Celsius temperature to Fahrenheit temperature.
Hester, Colin. J. Chem. Educ. 1995, 72, 1026.
Calorimetry / Thermochemistry |
Nomenclature / Units / Symbols |
Chemometrics
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
A Pictorial Analogy for Energy Content and Temperature  Thomas D. Crute
Analogy to help students distinguish between heat and temperature.
Crute, Thomas D. J. Chem. Educ. 1995, 72, 914.
Calorimetry / Thermochemistry
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
Calorie Content of Foods: A Laboratory Experiment Introducing Measuring by Calorimeter  Cohen, Bernard L.; Schilken, Catherine A.
Overcoming the challenges posed by determining the calorie content of food by calorimetry.
Cohen, Bernard L.; Schilken, Catherine A. J. Chem. Educ. 1994, 71, 342.
Calorimetry / Thermochemistry |
Food Science
An Economical, Safe, and Sturdy Student Calorimeter  Ruekberg, Ben
Replacing the styrofoam, coffee cup calorimeter with the Snak Jar.
Ruekberg, Ben J. Chem. Educ. 1994, 71, 333.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Delayed explosions  Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro
A container is filled with a fuel and lit through a small hole. Variations of this demo are included.
Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro J. Chem. Educ. 1993, 70, 1030.
Calorimetry / Thermochemistry
The repeating "exploding" flask: A demonstration of heterogeneous catalysis   Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A.
This demonstration can be used to illustrate heterogeneous catalysis and thermochemistry.
Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A. J. Chem. Educ. 1993, 70, 1029.
Calorimetry / Thermochemistry |
Catalysis
The activation energy of a slap bracelet   Kramer, F. Axtell.
This accessory/toy can be used to help students understand activation energy.
Kramer, F. Axtell. J. Chem. Educ. 1993, 70, 1002.
Kinetics |
Reactions |
Calorimetry / Thermochemistry
Heat of solution of hydrogen chloride: A laboratory experiment  Harms, Gregory S.; Lehman, Thomas A.
A simple technique for measuring the heat of solution of HCl in water.
Harms, Gregory S.; Lehman, Thomas A. J. Chem. Educ. 1993, 70, 955.
Acids / Bases |
Solutions / Solvents |
Calorimetry / Thermochemistry
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
A spontaneous exothermic reaction between two solids: A safe demonstration  Scott, Earle S.
Reaction between equal masses of hydroxylamine hydrochloride and sodium nitrite.
Scott, Earle S. J. Chem. Educ. 1992, 69, 1028.
Solids |
Calorimetry / Thermochemistry |
Reactions
Storing solar energy in calcium chloride  Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F.
Using common chemistry concepts to determine the feasibility of storing solar energy in calcium chloride hexahydrate.
Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 753.
Calorimetry / Thermochemistry |
Stoichiometry |
Chemometrics
The howling gummy bear   Sullivan, Dan M.
This demonstration illustrates the fact that we consume high-energy foods in order to obtain the reduced carbon they contain.
Sullivan, Dan M. J. Chem. Educ. 1992, 69, 326.
Carbohydrates |
Food Science |
Calorimetry / Thermochemistry
Measuring the heat of sublimation of dry ice with a polystyrene foam cup calorimeter  Burgstahler, Albert W.; Bricker, Clark E.
Two versions of an insulated cup calorimetry experiment.
Burgstahler, Albert W.; Bricker, Clark E. J. Chem. Educ. 1991, 68, 332.
Calorimetry / Thermochemistry
Bomb calorimeter simulation  Olney, David J.
Simulation of the apparatus and use of a bomb calorimeter; contains nine known samples and eight unknowns.
Olney, David J. J. Chem. Educ. 1990, 67, 922.
Calorimetry / Thermochemistry
Experiments with "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.

Paris, Michel R.; Aymes, Daniel J. J. Chem. Educ. 1990, 67, 510.
Laboratory Equipment / Apparatus |
Thermodynamics |
Calorimetry / Thermochemistry
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
Heat of solution and colligative properties: An illustration of enthalpy and entropy   Mundell, Donald W.
This demonstration provides a means for challenging the students to interpret some examples where both enthalpy and entropy are possible.
Mundell, Donald W. J. Chem. Educ. 1990, 67, 426.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
An alternate use of dilithium crystals   Lang, Frank T.
A Star Trek example of a mass-to-energy conversion important in nuclear reactions.
Lang, Frank T. J. Chem. Educ. 1990, 67, 277.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
The toppling box: A macroscopic analogy to single-step exothermic reactions  Eberlein, Thomas H.
Students who are unfamiliar with energy diagrams may find it difficult to visualize the energy changes associated with the processes occurring during a reaction.
Eberlein, Thomas H. J. Chem. Educ. 1990, 67, 26.
Calorimetry / Thermochemistry
How good is your bleach?  McCullough, Thomas, C. S. C.; Tyminski, Herminia
The exothermic reaction between acetone and household bleach is used to compare the strengths of various brands of bleach.
McCullough, Thomas, C. S. C.; Tyminski, Herminia J. Chem. Educ. 1989, 66, 973.
Consumer Chemistry |
Quantitative Analysis |
Calorimetry / Thermochemistry
A clinical digital thermometer for calorimetry  Hon, Ping-Kay
Modifying an inexpensive clinical thermometer for making thermochemical measurements.
Hon, Ping-Kay J. Chem. Educ. 1989, 66, 695.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Heating values of fuels: An introductory experiment  Rettich, Timothy R.; Battino, Rubin; Karl, David J.
This experiment is a simple, inexpensive way for students to determine the heats of combustion of common solid, liquid, and gaseous fuels.
Rettich, Timothy R.; Battino, Rubin; Karl, David J. J. Chem. Educ. 1988, 65, 554.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Heat of vaporization of nitrogen  Hamlet, Peter
A very simple procedure for measuring the heat of vaporization of nitrogen.
Hamlet, Peter J. Chem. Educ. 1987, 64, 1060.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Calorimetry / Thermochemistry
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
The energy relationships of corn production and alcohol fermentation  Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J.
The production of alcohol from corn lends itself well to illustrating the practical applications of scientific principles that deal with energy transformations and inefficiencies.
Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J. J. Chem. Educ. 1987, 64, 11.
Natural Products |
Applications of Chemistry |
Plant Chemistry |
Green Chemistry |
Alcohols |
Calorimetry / Thermochemistry |
Photosynthesis
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume I (Shakhashiri, Bassam Z.)  Kauffman, George B.
81 tested demonstrations grouped into 4 chapters: thermochemistry, chemiluminescence, polymers, and color and equilibria of metal ion precipitates and complexes.
Kauffman, George B. J. Chem. Educ. 1985, 62, A31.
Calorimetry / Thermochemistry |
Photochemistry |
Metals
A note concerning safety in bomb calorimetry  Wilson, Leland Y.; Tatum, Roger
Safety measures when using bomb calorimeters.
Wilson, Leland Y.; Tatum, Roger J. Chem. Educ. 1985, 62, 902.
Calorimetry / Thermochemistry
A thermochemistry experiment for freshman chemistry lab  Miller, D. P.
A thermochemistry procedure in which colors change during the experiment.
Miller, D. P. J. Chem. Educ. 1985, 62, 172.
Calorimetry / Thermochemistry
An inexpensive thermistor thermometer for beginning chemistry laboratories  Srivastava, Shyam B.; Meloan, Clifton E.
Design of a thermistor thermometer for heats-of-reaction measurements to 0.1C over short temperature ranges.
Srivastava, Shyam B.; Meloan, Clifton E. J. Chem. Educ. 1984, 61, 1027.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Nutrition (diet) and athletics  Lineback, David R.
Nutritional requirements of athletes, energy use for various activities, carbohydrate loading, and myths and fallacies.
Lineback, David R. J. Chem. Educ. 1984, 61, 536.
Nutrition |
Bioenergetics |
Metabolism |
Calorimetry / Thermochemistry |
Carbohydrates
Chemical storage of solar energy using an old color change demonstration  Spears, L. Gene, Jr.; Spears, Larry G.
The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage.
Spears, L. Gene, Jr.; Spears, Larry G. J. Chem. Educ. 1984, 61, 252.
Photochemistry |
Coordination Compounds |
Solutions / Solvents |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Chemical energy: A learning package  Cohen, Ita; Ben-Zvi, Ruth
Problems associated with the teaching of chemical energy and an instructional package designed to overcome those difficulties.
Cohen, Ita; Ben-Zvi, Ruth J. Chem. Educ. 1982, 59, 656.
Thermodynamics |
Calorimetry / Thermochemistry
A laboratory learning cycle: Hot stuff  Silberman, Robert G.
A calorimetry lab that allows students to design an experiment to solve a problem.
Silberman, Robert G. J. Chem. Educ. 1982, 59, 229.
Calorimetry / Thermochemistry
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
An illustration of applied calorimetry - Dieting students  Perkins, Robert R.
The author shares a question that catches student interest and exemplifies the theoretical concepts of calorimetry.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 548.
Calorimetry / Thermochemistry |
Thermodynamics |
Applications of Chemistry
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
A specific heat analogy  McCullough, Brother Thomas, CSC
An analogy for helping students to understand the concepts of specific heat and heat transfer problems.
McCullough, Brother Thomas, CSC J. Chem. Educ. 1980, 57, 896.
Calorimetry / Thermochemistry |
Chemometrics
Sweet heat  O'Connor, Rod
What would be the net enthalpy change for the complete combustion of 5.00 g of glucose at body temperature?
O'Connor, Rod J. Chem. Educ. 1980, 57, 889.
Carbohydrates |
Calorimetry / Thermochemistry |
Chemometrics
Alternate energy  Taylor, Thomas E.
At what concentration does the uranium impurities found in coal equal its energy content?
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 500.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
The heat of combustion of cereals  Glachino, Gary G.
Determining the heat of combustion of common children's cereals.
Glachino, Gary G. J. Chem. Educ. 1980, 57, 372.
Calorimetry / Thermochemistry |
Food Science
The experimental determination of the heat of vaporization of volatile liquids  Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry
An experiment whereby the heat of vaporization of a volatile liquid can be determined from an Arrhenius plot.
Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry J. Chem. Educ. 1980, 57, 362.
Calorimetry / Thermochemistry |
Liquids |
Phases / Phase Transitions / Diagrams
Solar energy storage: A demonstration experiment  Kimmel, Howard S.; Tomkins, Reginald P. T.
A demonstration of a phase transition that can be used for heat storage.
Kimmel, Howard S.; Tomkins, Reginald P. T. J. Chem. Educ. 1979, 56, 615.
Phases / Phase Transitions / Diagrams |
Calorimetry / Thermochemistry |
Applications of Chemistry
Determination of solution enthalpy: An easy and simple method  Karunakaran, K.
A method that does not involve the preparation and analysis of saturated solutions at different temperatures.
Karunakaran, K. J. Chem. Educ. 1979, 56, 389.
Solutions / Solvents |
Calorimetry / Thermochemistry |
Laboratory Management
Discarded energy: The heat of combustion of garbage  Jensen, Trescott E.; Eatough, Delbert J.; Hansen, Lee D.
Calorimetry data for burning different samples of shredded garbage is found to be higher than that for wood.
Jensen, Trescott E.; Eatough, Delbert J.; Hansen, Lee D. J. Chem. Educ. 1977, 54, 700.
Calorimetry / Thermochemistry |
Applications of Chemistry
Hydrogen bonding and heat of solution  Friedman, Norman
An experiment that clearly illustrates the role of hydrogen bond formation and its effect on the heat of solution.
Friedman, Norman J. Chem. Educ. 1977, 54, 248.
Hydrogen Bonding |
Calorimetry / Thermochemistry |
Solutions / Solvents
Questions [and] Answers  Campbell, J. A.
203-205. Three chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 587.
Enrichment / Review Materials |
Thermodynamics |
Calorimetry / Thermochemistry
Heat of combustion of zirconium. A general chemistry experiment  Banks, Richard C.; Carter, Loren; Peterson, Ellis R.
Experiment consists of a flash bulb surrounded by water and fired by a battery.
Banks, Richard C.; Carter, Loren; Peterson, Ellis R. J. Chem. Educ. 1975, 52, 235.
Calorimetry / Thermochemistry
A simplified undergraduate calorimetry experiment  Bartle, K. D.; Osborn, P. M.
A glass calorimeter for determining ?H for the neutralization of a strong acid with a strong base.
Bartle, K. D.; Osborn, P. M. J. Chem. Educ. 1973, 50, 637.
Acids / Bases |
Reactions |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A practical energy experiment or lecture demonstration  Garin, David L.
Presents two demonstrations: one involves heating different volumes of water on the same heater and measuring their temperatures; the other involves heating different volumes of water on the same heater and calculating the heat of vaporization.
Garin, David L. J. Chem. Educ. 1973, 50, 497.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
A computer program for heat of combustion calculations  Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol
A computer program is available for converting raw combustion data to the standard state energy of combustion.
Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol J. Chem. Educ. 1973, 50, 486.
Calorimetry / Thermochemistry |
Chemometrics
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
Convenient, inexpensive unknowns for oxygen bomb calorimetry  Shearer, Edmund C.
Ordinary aspirin tablets make excellent samples for oxygen bomb calorimetry.
Shearer, Edmund C. J. Chem. Educ. 1972, 49, 410.
Calorimetry / Thermochemistry
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 269.
Enrichment / Review Materials |
Agricultural Chemistry |
Metabolism |
Calorimetry / Thermochemistry |
Proteins / Peptides
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
A classroom demonstration of exothermicity  Boschmann, Erwin
The heat generated by dissolving NaOH in water causes iodine crystals to sublime.
Boschmann, Erwin J. Chem. Educ. 1970, 47, A206.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
Instant first aid  Kaufman, James A.
Explains how instant ice and hot packs work.
Kaufman, James A. J. Chem. Educ. 1970, 47, 518.
Calorimetry / Thermochemistry |
Reactions |
Applications of Chemistry |
Consumer Chemistry
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
A spontaneous endothermic reaction  Hambly, Arthur N.
Barium hydroxide and ammonium thiocyanate react in a flask, causing the water beneath it to freeze.
Hambly, Arthur N. J. Chem. Educ. 1969, 46, A55.
Calorimetry / Thermochemistry |
Reactions
Volkswagen versus the hummingbird  Nebbia, Giorgio
Questions the cited (046-07-0455) thermodynamic calculations.
Nebbia, Giorgio J. Chem. Educ. 1969, 46, 701.
Thermodynamics |
Calorimetry / Thermochemistry |
Chemometrics
Fuel conversion in transport phenomena  Gerlach, E. R.
Calculations comparing the fuel efficiency of a hummingbird with that of a Volkswagen.
Gerlach, E. R. J. Chem. Educ. 1969, 46, 455.
Calorimetry / Thermochemistry |
Chemometrics |
Nomenclature / Units / Symbols
Indirect calorimetry by computer in the general chemistry course  DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel
Describes the use of a Fortran IV program to stimulate student interest in the applications and potential of computer techniques in chemistry.
DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1969, 46, 398.
Calorimetry / Thermochemistry |
Thermodynamics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Spontaneous combustion  Geoghegan, John T.; Sheers, Edward H.
Linseed oil is observed to char cotton over a period of time.
Geoghegan, John T.; Sheers, Edward H. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Reactions |
Calorimetry / Thermochemistry
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
A calorimeter for general chemistry  Garin, D. L.
Suggests an insulated food jar as a durable and suitable calorimeter for general chemistry.
Garin, D. L. J. Chem. Educ. 1968, 45, 37.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Recent developments in calorimetry: Part two. Some associated measurements (cont.)  Wilhoit, Randolph C.
Examines the measurement of electricity, calorimetric standards, solution calorimetry, and specific types of calorimeters.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A685.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry (continued) Part 2. Some associated measurements  Wilhoit, Randolph C.
Topics examined include thermocouples, resistance thermometers, thermistors, and quartz crystal thermometers.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A629.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry. Part 1. Introductory survey of calorimetry  Wilhoit, Randolph C.
Explores the scope and purpose of calorimetric investigation, types of calorimeters, areas of calorimetric investigation and the procedures and calculations involved.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A571.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Energy B. Heat energy   Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N.
Demonstrations of the heat of crystallization (sodium acetate and Na2S2O3[5H2O]), heat of formation (ZnCl2), heat of hydration (CaO and CuSO4), heat of neutralization, heat of solvation (alcohols), evaporation of ether and methyl chloride, and heat of solution (NH4NO3).
Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A1079.
Reactions |
Calorimetry / Thermochemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Precipitation / Solubility
Demonstrations of spontaneous endothermic reactions  Matthews, G. W. J.
The reaction between hydrated metal chlorides and thionyl chloride provides a series of valuable experiments that can be used to demonstrate spontaneous endothermic reactions.
Matthews, G. W. J. J. Chem. Educ. 1966, 43, 476.
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
A sensitive inexpensive thermometer  Slabaugh, W. H.
Presents a circuit diagram for a simple thermistor.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 467.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Thermochemical investigations for a first-year college chemistry course. A survey of existing literature  Ewing, Galen W.
The purpose of this article is to review some of the experiments that appear in the literature involving thermochemistry.
Ewing, Galen W. J. Chem. Educ. 1965, 42, 26.
Calorimetry / Thermochemistry
Heat of precipitation  Clever, H. L.
Provides suggestions for research to accompany earlier published articles.
Clever, H. L. J. Chem. Educ. 1963, 40, A386.
Undergraduate Research |
Calorimetry / Thermochemistry |
Precipitation / Solubility
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
Calorimetry  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
The freshman chemistry lab involves measuring the heat capacities of nickel and copper and the heats of two neutralization reactions.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 90.
Calorimetry / Thermochemistry
Temperature and power measurements in precision solution calorimetry  O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G.
Presents the design of a calorimetric apparatus, and accompanying circuit schematic, and their application to calorimetry measurements.
O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G. J. Chem. Educ. 1961, 38, 512.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Heat of reaction and H2SO4 concentration: A general chemistry experiment  Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander
This procedure measures the heat of reaction between water and sulfuric acid of various concentrations; this information is used to determine the concentration of an unknown acid sample.
Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander J. Chem. Educ. 1961, 38, 472.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Acids / Bases
Heat of precipitation: A general chemistry experiment  Clever, H. Lawrence
This heat of precipitation experiment is conducted in a simple calorimeter constructed by each student from an Erlenmeyer flask.
Clever, H. Lawrence J. Chem. Educ. 1961, 38, 470.
Calorimetry / Thermochemistry |
Precipitation / Solubility
A flashbulb bomb calorimeter  Hornyak, Frederick M.
This report describes a do-it-yourself experiment in thermochemistry using flashbulbs as calorimeter bombs.
Hornyak, Frederick M. J. Chem. Educ. 1961, 38, 97.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Water equivalent of vacuum flask calorimeter by the ice fusion method  Dunicz, Boleslaw Ludwik
Presents the design of a vacuum flask calorimeter and describes the determination of its water equivalent by the ice fusion method.
Dunicz, Boleslaw Ludwik J. Chem. Educ. 1960, 37, 635.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A simple ice calorimeter: A first experiment in thermochemistry  Mahan, Bruce H.
This note describes a relatively crude and simple ice calorimeter that can be supplied to each student.
Mahan, Bruce H. J. Chem. Educ. 1960, 37, 634.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermodynamics
Calorimeter for determining heat capacities of liquids  Greene, Stanley A.
This paper describes a method for utilizing a constant-power heating device that eliminates the need for a preponderance of equipment yet permits reasonable accuracy in determining the heat capacities of liquids.
Greene, Stanley A. J. Chem. Educ. 1955, 32, 577.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Liquids
A temperature-equilibrium demonstration  Brown, John A.
This demonstration makes use of the colored cobaltous complexes in a mixed solvent to show the dependence of some equilibria on temperature.
Brown, John A. J. Chem. Educ. 1951, 28, 640.
Equilibrium |
Calorimetry / Thermochemistry |
Thermodynamics |
Coordination Compounds
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry