TIGER

Journal Articles: 128 results
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
Using Pooled Data and Data Visualization To Introduce Statistical Concepts in the General Chemistry Laboratory   Robert J. Olsen
This article describes how data pooling and visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set.
Olsen, Robert J. J. Chem. Educ. 2008, 85, 544.
Chemometrics |
Stoichiometry
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Let's All Visit Mole City!  Addison Ault
Additional commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Ault, Addison. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Let's All Visit Mole City!  Mark W. Armstrong
Brief commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Armstrong, Mark W. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Interactive Demonstrations for Mole Ratios and Limiting Reagents  Crystal Wood and Bryan Breyfogle
The objective of this study was to develop interactive lecture demonstrations based on conceptual-change learning theory. Experimental instruction was designed for an introductory chemistry course for nonmajors to address misconceptions related to mole ratios and limiting reagents
Wood, Crystal; Breyfogle, Bryan. J. Chem. Educ. 2006, 83, 741.
Learning Theories |
Reactions |
Stoichiometry |
Student-Centered Learning
Stoichiometry of Calcium Medicines  Gabriel Pinto
Calcium supplements provide an excellent context in which to review most of the core content of general chemistry, namely, stoichiometry, concentration units, hydration of salts, inorganic and organic salts, physiological importance of elements, resonance in ions, geometry of polyatomic ions, and isomerism.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1509.
Stoichiometry |
Applications of Chemistry |
Drugs / Pharmaceuticals |
Medicinal Chemistry
Mass Relationships in a Chemical Reaction: Incorporating Additional Graphing Exercises into the Introductory Chemistry Laboratory  Stephen DeMeo
The purpose of this article is to increase student involvement with graph construction specifically in the context of introductory laboratory activities that involve mass relationships between reacting substances and products. In this regard, five massĀmass plots derived from a synthesis of a binary compound from its elements are presented as well as a set of questions to focus learners on the significance of each plot. The benefit of providing learners with these types of graphing activities include the use of higher-order cognitive processes as well as the elucidation of fundamental chemical knowledge such as the law of the conservation of mass, the law of constant composition, limiting and excess reactants, and empirical formula.
DeMeo, Stephen. J. Chem. Educ. 2005, 82, 1219.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Quantitative Analysis
Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills  Elzbieta Cook and Robert L. Cook
This paper focuses attention on the cross-proportion (C-P) method of mathematical problem solving, which was once widely used in chemical calculations. We propose that this method regain currency as an alternative to the dimensional analysis (DA) method, particularly in lower-level chemistry courses. In recent years, the DA method has emerged as the only problem solving mechanism offered to high-school and general chemistry students in contemporary textbooks, replacing more conceptual methods, C-P included.
Cook, Elzbieta; Cook, Robert L. J. Chem. Educ. 2005, 82, 1187.
Learning Theories |
Stoichiometry |
Chemometrics |
Student-Centered Learning
Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry  Ed Vitz
Calculations demonstrating amino acid complementarity are presented as an interesting application of stoichiometry. Food proteins are said to have complementary amino acids when the proteins combine to provide amino acids in the proper stoichiometric ratios to synthesize human protein. Implications for vegetarian diet, efficiency of food production, and diet adaptations in various cultures are explored briefly.
Vitz, Ed. J. Chem. Educ. 2005, 82, 1013.
Amino Acids |
Proteins / Peptides |
Stoichiometry |
Food Science
Analysis of OxiClean: An Interesting Comparison of Percarbonate Stain Removers  Jeffrey D. Bracken and David Tietz
Several different brands of oxygen-based multipurpose stain removers consist of simple mixtures of sodium percarbonate and sodium carbonate. A small sample of each brand of stain remover is decomposed and then analyzed. The observed difference in mass allows students to accurately determine the percentages of each component of the stain remover. A back-titration experiment and a precipitation reaction are performed to confirm the complete decomposition of the original mixture.
Bracken, Jeffrey D.; Tietz, David. J. Chem. Educ. 2005, 82, 762.
Stoichiometry |
Consumer Chemistry
Evaluating Students' Conceptual Understanding of Balanced Equations and Stoichiometric Ratios Using a Particulate Drawing  Michael J. Sanger
A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between the concepts of subscripts and coefficients and including unreacted chemical species in the equation.
Sanger, Michael J. J. Chem. Educ. 2005, 82, 131.
Stoichiometry |
Kinetic-Molecular Theory
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumĀiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
The Decomposition of Zinc Carbonate: Using Stoichiometry To Choose between Chemical Formulas  Stephen DeMeo
To determine which formula corresponds to a bottle labeled "zinc carbonate", students perform qualitative tests on three of zinc carbonate's decomposition products: zinc oxide, carbon dioxide, and water. Next students make quantitative measurements to find molar ratios and compare them with the coefficients of the balanced chemical equations. This allows the correct formula of zinc carbonate to be deduced.
DeMeo, Stephen. J. Chem. Educ. 2004, 81, 119.
Gases |
Stoichiometry |
Quantitative Analysis
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
Use of Chloroisocyanuarates for Disinfection of Water: Application of Miscellaneous General Chemistry Topics  Gabriel Pinto and Brian Rohrig
Using the chlorination of water (using sodium dichloroisocyanurate and trichloroisocyanuric acid) to develop general chemistry concepts; includes question for students and answers.
Pinto, Gabriel; Rohrig, Brian. J. Chem. Educ. 2003, 80, 41.
Stoichiometry |
Water / Water Chemistry |
Applications of Chemistry |
Photochemistry
Crystal Models Made from Clear Plastic Boxes and Their Use in Determining Avogadro's Number  Thomas H. Bindel
Construction and use of unit cell / crystal lattice models made from clear plastic boxes.
Bindel, Thomas H. J. Chem. Educ. 2002, 79, 468.
Crystals / Crystallography |
X-ray Crystallography |
Stoichiometry |
Molecular Modeling
Problem Analysis: Lesson Scripts and Their Potential Applications  Maria Oliver-Hoyo
Development and use of lesson scripts to give students more informative feedback when performing calculations in an interactive, computerized tutorial.
Oliver-Hoyo, Maria. J. Chem. Educ. 2001, 78, 1425.
Stoichiometry |
Learning Theories
Making Assumptions Explicit: How the Law of Conservation of Matter Can Explain Empirical Formula Problems  Stephen DeMeo
How the law of conservation of mass provides a theoretical foundation for empirical formula problems that introductory students encounter.
DeMeo, Stephen. J. Chem. Educ. 2001, 78, 1050.
Descriptive Chemistry |
Stoichiometry
A Known-to-Unknown Approach to Teach about Empirical and Molecular Formulas  P. K. Thamburaj
Analogy for helping students to understand molecular and empirical formula problems.
Thamburaj, P. K. J. Chem. Educ. 2001, 78, 915.
Stoichiometry
Analysis of an Oxygen Bleach: A Redox Titration Lab  Christine L. Copper and Edward Koubek
Students balance the reaction of H2O2 and MnO4 in two different ways (one assuming that H2O2 is the oxygen source and a second assuming that MnO4 is the oxygen source), determine which of these balanced equations has the correct stoichiometry by titrating a standard H2O2 solution with KMnO4, and use the correct balanced equation to determine the mass percent of H2O2 in a commercially available bleach solution.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 2001, 78, 652.
Quantitative Analysis |
Oxidation / Reduction |
Stoichiometry |
Titration / Volumetric Analysis |
Consumer Chemistry
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Pressure and Stoichiometry  Charles E. Roser and Catherine L. McCluskey
This experiment determines the stoichiometry of the reaction of a carbonate or hydrogen carbonate and HCl by measuring the pressure of the CO2 produced using a Vernier pressure sensor, TI CBL interface, and a TI-82/83 graphing calculator. Various amounts of the carbonate are reacted with a constant amount of HCl.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 638.
Stoichiometry |
Gases |
Laboratory Computing / Interfacing
Amounts Tables as a Diagnostic Tool for Flawed Stoichiometric Reasoning  John Olmsted III
Amounts tables can be used to organize the data and reasoning involved in limiting-reagent problems. In this context, amounts tables can provide useful diagnostic information about students' abilities to reason stoichiometrically.
Olmsted, John A., III. J. Chem. Educ. 1999, 76, 52.
Learning Theories |
Stoichiometry
A Cyclist's Guide to Ionic Concentration  Arthur M. Last
A simple analogy to help students understand ionic concentration is presented.
Last, Arthur M. J. Chem. Educ. 1998, 75, 1433.
Solutions / Solvents |
Stoichiometry
Percent Composition and Empirical Formula - A New View  George L. Gilbert
A new method of obtaining the empirical formula for a compound from its percent composition is proposed. The method involves the determination of a minimum molar mass for the compound based on the percentage of each element, obtaining the lowest common molar mass and using this data to calculate the integer values used in writing the empirical formula.
Gilbert, George L. J. Chem. Educ. 1998, 75, 851.
Atomic Properties / Structure |
Stoichiometry |
Chemometrics
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
CheMentor Software System by H. A. Peoples  reviewed by Brian P. Reid
CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit.
Reid, Brian P. J. Chem. Educ. 1997, 74, 1047.
Stoichiometry
Stoogiometry: A Cognitive Approach to Teaching Stoichiometry  Carla R. Krieger
Moe's Mall is a locational device designed to be used by learners as a simple algorithm for solving mole-based exercises efficiently and accurately. The mall functions as a map for setting up solutions to mole-based exercises using dimensional analysis. It clears the cognitive decks of students' easily overburdened short-term memory space, allowing them to focus on the versatility of the mole, rather than stepwise solutions to meaningless exercises.
Krieger, Carla R. J. Chem. Educ. 1997, 74, 306.
Learning Theories |
Computational Chemistry |
Stoichiometry
The Stoichiometry of the Neutralization of Citric Acid: An Introductory Laboratory  Susan E. Hayes
Experiment to introduce stoichiometry to pre-college students; includes sample data and analysis.
Hayes, Susan E. J. Chem. Educ. 1995, 72, 1029.
Acids / Bases |
Stoichiometry
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
Conservation of Matter  Meyer, Edwin F.
Letter pointing out that the demonstration referred to allows a quantitative measurement of the molecular weight of carbon dioxide.
Meyer, Edwin F. J. Chem. Educ. 1995, 72, 764.
Physical Properties |
Stoichiometry
A Graphical Representation of Limiting Reactant  Phillips, J. C.
The concept of limiting reactant may be conveniently illustrated by a graphical representation method that is based on a "minimum slope".
Phillips, J. C. J. Chem. Educ. 1994, 71, 1048.
Stoichiometry
The Mole Concept: Developing an Instrument To Assess Conceptual Understanding  Krishnan, Shanthi R.; Howe, Ann C.
The development of a diagnostic test to assess conceptual understanding of the mole.
Krishnan, Shanthi R.; Howe, Ann C. J. Chem. Educ. 1994, 71, 653.
Stoichiometry |
Constructivism
Pictorial analogies VIII: Types of formulas and structural isomers   Fortman, John J.
Visual ways of understanding empirical, structural, and molecular formulas as well as structural isomers.
Fortman, John J. J. Chem. Educ. 1993, 70, 755.
Stoichiometry |
Diastereomers
Experiments for modern introductory chemistry: Limiting reagent, stoichiometry, and the mole  Kildahl, Nicholas; Berka, Ladislav H.
Description of an experiment based on electronic absorption spectroscopy for general chemistry students that gives accurate results, conveys the excitement of discovery in experimental science, and illustrates key concepts.
Kildahl, Nicholas; Berka, Ladislav H. J. Chem. Educ. 1993, 70, 671.
Stoichiometry |
Spectroscopy
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Combustion of hydrocarbons: A stoichiometry demonstration   Alexander, M. Dale
A simple demonstration that makes the introduction of stoichiometry more interesting and relevant to students.
Alexander, M. Dale J. Chem. Educ. 1993, 70, 327.
Stoichiometry
Empirical formulas from atom ratios: A simple method to obtain the integer factors of a rational number  Weltin, E.
Most textbooks advise students to use a method tantamount to trial and error when they encounter a ratio in empirical formula calculations where it is not immediately apparent what the coefficients should be. The author describes a simple procedure that is an effective way to find the integer factors.
Weltin, E. J. Chem. Educ. 1993, 70, 280.
Stoichiometry |
Chemometrics
Using monetary analogies to teach average atomic mass   Last, Arthur M.; Webb, Michael J.
Some strategies to overcome the frequent problem novice students have with calculating average atomic mass.
Last, Arthur M.; Webb, Michael J. J. Chem. Educ. 1993, 70, 234.
Chemometrics |
Stoichiometry
Relative atomic mass and the mole: A concrete analogy to help students understand these abstract concepts   de Sanabia, Josefina Arce
Suggestions on how to improve student understandings of the mathematical idea of "ratio" to enhance conceptual understanding of this fundamental chemistry concept.
de Sanabia, Josefina Arce J. Chem. Educ. 1993, 70, 233.
Chemometrics |
Stoichiometry
Balancing a chemical equation: What does it mean?  Filgueiras, Carlos A
Students were puzzled by the idea that one chemical equation could be balanced in several different ways. This led to a fruitful discussion on how exact a science chemistry really is.
Filgueiras, Carlos A J. Chem. Educ. 1992, 69, 276.
Stoichiometry |
Oxidation / Reduction
The old Nassau demonstration: Educational and entertaining variations  Fortman, John J.
The Old Nassau reaction can be used to illustrate the effects of concentration and temperature on rates in a fun way.
Fortman, John J. J. Chem. Educ. 1992, 69, 236.
Kinetics |
Stoichiometry |
Rate Law
Are moles really necessary?  McCullough, Bro. Thomas
Moles should not be allowed to divert ones attention from the equally valid and equally important balanced equation.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 121.
Stoichiometry
Micro-Kipp gas generators   Wilson, Byron J.
An attention-getting microexperiment to illustrate chemical stoichiometry involving several rockets made from plastic Beral pipets.
Wilson, Byron J. J. Chem. Educ. 1991, 68, A297.
Microscale Lab |
Stoichiometry |
Laboratory Equipment / Apparatus
A poster exhibit on stoichiometry for National Chemistry Week  Pacer, Richard A.
An idea for a visually intriguing poster that will invite attention.
Pacer, Richard A. J. Chem. Educ. 1991, 68, 549.
Stoichiometry |
UV-Vis Spectroscopy
Analysis of organic acids: A freshman laboratory experiment  Griswold, John R.; Rauner, Richard A.
In this experiment students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol.
Griswold, John R.; Rauner, Richard A. J. Chem. Educ. 1990, 67, 516.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry |
Precipitation / Solubility
Problem solving and requisite knowledge of chemistry  Lythcott, Jean
It is possible for students to produce right answers to chemistry problems without really understanding much of the chemistry involved.
Lythcott, Jean J. Chem. Educ. 1990, 67, 248.
Stoichiometry |
Learning Theories
Stoichiometry for copper dissolution in nitric acid: A comment   Carr, James D.
An explanation for the reason that several sets of coefficients will balance the reaction equation between copper and nitric acid.
Carr, James D. J. Chem. Educ. 1990, 67, 183.
Stoichiometry
A stoichiometric journey  Molle, Brian
A story to help students overcome some of the difficulties they encounter in stoichiometry calculations.
Molle, Brian J. Chem. Educ. 1989, 66, 561.
Stoichiometry |
Chemometrics
Moles, pennies, and nickels  Myers. Thomas R.
Students frequently have difficulty with the mole concept initially because atoms and molecules are involved and these are invisible.
Myers. Thomas R. J. Chem. Educ. 1989, 66, 249.
Stoichiometry
Teaching stoichiometry: A two cycle approach   Poole, Richard L.
It is the intent of this article to describe and illustrate a tandem approach for the teaching of stoichiometry that the author developed.
Poole, Richard L. J. Chem. Educ. 1989, 66, 57.
Stoichiometry
Teaching stoichiometry   Figueira, Alvaro Rocha
Students have a hard time with stoichiometry because it is often presented in a manner that is divorced from content and application.
Figueira, Alvaro Rocha J. Chem. Educ. 1988, 65, 1060.
Applications of Chemistry |
Stoichiometry
Stoichiometry to the rescue (a calculation challenge)   Ramette, Richard W.
Presentation of a question that would be suitable for a take-home exam or a problem set in a general or analytical chemistry course.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 800.
Amines / Ammonium Compounds |
Gases |
Stoichiometry
A simple quantitative synthesis: Sodium chloride from sodium carbonate  Gold, Marvin
A stoichiometry experiment that fulfills the following: satisfactory precision, no need for a fume hood, is interesting and instructive, and the products can be discarded in the sink.
Gold, Marvin J. Chem. Educ. 1988, 65, 731.
Stoichiometry
Oxalate blockage of calcium and iron: A student learning activity  Walker, Noojin
The topics of iron deficiency anemia and osteoporosis entice student attention and can be used to construct meaningful learning activities about percent composition, mole concept, selective precipitation, and limiting factors.
Walker, Noojin J. Chem. Educ. 1988, 65, 533.
Medicinal Chemistry |
Stoichiometry |
Plant Chemistry |
Bioanalytical Chemistry |
Bioinorganic Chemistry
Avogadro's number: A perverse view  Lehman, Thomas A.
A way to think of Avogadro's number: take anything and double it 79 times.
Lehman, Thomas A. J. Chem. Educ. 1988, 65, 282.
Chemometrics |
Stoichiometry
Reaction stoichiometry and suitable "coordinate systems"  Tykodi, R. J.
Methods for dealing with problems involving reactions stoichiometry: unitize and scale up, factor-label procedure, de Donder ratios, and titration relations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 958.
Stoichiometry |
Titration / Volumetric Analysis |
Chemometrics
A convenient demonstration of combustion and explosion  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
Demonstrating the correct molar ratio between propane and oxygen.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1987, 64, 894.
Stoichiometry |
Alkanes / Cycloalkanes |
Oxidation / Reduction
The chemistry tutor (Rinehart, F.P.)  Watkins, Stanley R.; Krugh, William D.
Two reviews of a two-disk package that is designed to help students master the essential skills of equation balancing, stoichiometric,and limiting reagents calculations.
Watkins, Stanley R.; Krugh, William D. J. Chem. Educ. 1986, 63, A206.
Stoichiometry
Chemistry: Stoichiometry and Chemistry: Acids and Bases ( Frazin, J. and partners)  Bendall, Victor I.; Roe, Robert, Jr.
Two reviews of a software package that contains drill and practice programs that are suitable for beginning students of chemistry.
Bendall, Victor I.; Roe, Robert, Jr. J. Chem. Educ. 1986, 63, A204.
Stoichiometry |
Acids / Bases
What can we do about Sue: A case study of competence  Herron, J. Dudley; Greenbowe, Thomas J.
A case study of a "successful" student who is representative of other successful students that are not prepared to solve novel problems.
Herron, J. Dudley; Greenbowe, Thomas J. J. Chem. Educ. 1986, 63, 528.
Stoichiometry |
Learning Theories
On writing equations  Campbell, J.A.
The author presents a very direct approach to writing complicated equations without using a matrix approach.
Campbell, J.A. J. Chem. Educ. 1986, 63, 63.
Stoichiometry |
Chemometrics
Mathematics in the chemistry classroom. Part 2. Elementary entities play their part  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
One of the problems that learners have to overcome when doing stoichiometry calculations is to learn how statements about elementary entities given by formulas and equations are related to statements about portions of substances as measured in the macroscopic world.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 1021.
Chemometrics |
Stoichiometry
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
How should equation balancing be taught?  Porter, Spencer K.
Suggestions for balancing chemical equations.
Porter, Spencer K. J. Chem. Educ. 1985, 62, 507.
Stoichiometry
Limiting and excess reagents, theoretical yield  Silversmith, Ernest F.
Comparing the construction of bicycles with limiting and excess reactants.
Silversmith, Ernest F. J. Chem. Educ. 1985, 62, 61.
Stoichiometry
Gram formula weights and fruit salad  Felty, Wayne L.
Effective analogy and explanation of gram formula weights.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 61.
Stoichiometry |
Atomic Properties / Structure |
Molecular Properties / Structure
The mole: Questioning format can make a difference  Lazonby, John N.; Morris, Jane E.; Waddington, David J.
Study of 2,695 high school students that found that it is the piecing together of the individual steps involved in mole calculations that presents the main difficulty for students.
Lazonby, John N.; Morris, Jane E.; Waddington, David J. J. Chem. Educ. 1985, 62, 60.
Nomenclature / Units / Symbols |
Stoichiometry
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Determination of ammonia in household cleaners: an instrumental analysis experiment  Graham, Richard C.; DePew, Steven
This popular experiment describes a procedure that is easily modified to determine quantitatively such analytes as ammonia in solution.
Graham, Richard C.; DePew, Steven J. Chem. Educ. 1983, 60, 765.
Quantitative Analysis |
Titration / Volumetric Analysis |
Acids / Bases |
pH |
Consumer Chemistry |
Stoichiometry |
Solutions / Solvents
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
Simplest formula of copper iodide: a stoichiometry experiment  MacDonald, D. J.
It is difficult to find a chemistry experiment that convincingly demonstrates stoichiometric relationships. The experiment in this article is elegant and pedagogically effective.
MacDonald, D. J. J. Chem. Educ. 1983, 60, 147.
Stoichiometry
Balancing complex chemical equations using a hand-held calculator   Alberty, Robert A.
37. Bits and pieces, 14. This article is primarily concerned the question: If certain specified chemical species are involved in a reaction, what are the stoichiometric coefficients?
Alberty, Robert A. J. Chem. Educ. 1983, 60, 102.
Stoichiometry
Some tungsten oxidation-reduction chemistry: A paint pot titration  Pickering, Miles; Monts, David L.
Mild reducing agents reduce WO3 to a nonstoichiometric blue oxide, "mineral blue," whose approximate formula is WO2.2-3.0.
Pickering, Miles; Monts, David L. J. Chem. Educ. 1982, 59, 693.
Titration / Volumetric Analysis |
Oxidation / Reduction |
Stoichiometry
The copper(I) iodide law of definite proportions revisited  Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D.
Improvement to the cited experiment.
Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D. J. Chem. Educ. 1982, 59, 148.
Stoichiometry
Balancing complex redox equations by inspection   Kolb, Doris
A step-by-step walk through of the inspection process for balancing equations.
Kolb, Doris J. Chem. Educ. 1981, 58, 642.
Stoichiometry |
Chemometrics
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
The barium hydroxide ammonium thiocyanate reaction: A titrimetric continuous variations experiment  Harris, Arlo D.
Experiment that uses acid-base titrimetry to study the stoichiometry of a novel solid state reaction.
Harris, Arlo D. J. Chem. Educ. 1979, 56, 477.
Titration / Volumetric Analysis |
Acids / Bases |
Solid State Chemistry |
Stoichiometry
More on balancing redox equations  Kolb, Doris
Balancing atypical redox equations.
Kolb, Doris J. Chem. Educ. 1979, 56, 181.
Stoichiometry |
Oxidation / Reduction
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
The chemical formula. Part I: Development  Kolb, Doris
The origin of the chemical formula, the problem of isomers, nucleus theory, radical theories, residue theory, type theory, extension of the type theory, valence theory, graphic formulas, and contribution of Cannizzaro.
Kolb, Doris J. Chem. Educ. 1978, 55, 44.
Stoichiometry
The relationship of lead and sulfur in a chemical reaction  Chapman, V. L.
Investigating the stoichiometric synthesis of lead and sulfur to form lead sulfide.
Chapman, V. L. J. Chem. Educ. 1977, 54, 436.
Reactions |
Stoichiometry
A demonstration in solid state chemistry: The nonstoichiometry of nickel oxide, NiO  Perrino, Charles T.; Johnson, Robert
A simple experiment to demonstrate the nonstoichiometric synthesis of nickel oxide.
Perrino, Charles T.; Johnson, Robert J. Chem. Educ. 1977, 54, 367.
Stoichiometry |
Oxidation State |
Oxidation / Reduction |
Solid State Chemistry |
Metals
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
Cookbook dimensional analysis  DeLorenzo, Ronald
Frequently, teachers will hear, "...it looks easy when you do it..." when teaching dimensional analysis. This teacher advises others on a way to help students gain self-efficacy with this problem solving-strategy.
DeLorenzo, Ronald J. Chem. Educ. 1976, 53, 633.
Stoichiometry |
Chemometrics
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Illustrating large and small numbers. A problem for the birds  Sattler, Louis
A calculation designed to illustrate the relative size of Avogadro's number. The solution from p. 181 is reproduced in this PDF.
Sattler, Louis J. Chem. Educ. 1975, 52, 180.
Chemometrics |
Stoichiometry
The reduction of CuO with burner gas and without a fume hood. A high school chemistry experiment  Zidick, Clem; Weismann, Thomas
This experiment is a modification of the classic reduction of CuO with hydrogen gas, except natural gas is used as the reducing agent, eliminating the danger of working with hydrogen.
Zidick, Clem; Weismann, Thomas J. Chem. Educ. 1973, 50, 717.
Oxidation / Reduction |
Reactions |
Stoichiometry
The law of definite proportions. An experiment for introductory chemistry  Wilhelm, Dale L.
Using the synthesis of copper iodide to demonstrate the law of definite proportions has advantages over other compounds.
Wilhelm, Dale L. J. Chem. Educ. 1973, 50, 436.
Stoichiometry |
Synthesis
The mole and Avogadro's number. A forced fusion of ideas for teaching purposes  Hawthorne, Robert M., Jr.
History of Avogadro's number and the mole and their increasing association with one another.
Hawthorne, Robert M., Jr. J. Chem. Educ. 1973, 50, 282.
Stoichiometry
Questions [and] Answers  Campbell, J. A.
Six questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 538.
Enrichment / Review Materials |
Applications of Chemistry |
Electrochemistry |
Astrochemistry |
Stoichiometry |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
The oxidation of hydrazine by basic iodine solutions: A stoichiometric study  Cooper, J. N.; Ramette, R. W.
This experiment relies on an oxidation-reduction reaction for which a variety of products is energetically possible.
Cooper, J. N.; Ramette, R. W. J. Chem. Educ. 1969, 46, 872.
Stoichiometry |
Oxidation / Reduction |
Reactions
The stoichiometry of silver chromate and basic copper chromate: Investigations for the freshman laboratory  Kalbus, L. H.; Petrucci, R. H.
This project begins with a continuous variation study of the formation of silver chromate and then turns to copper chromate and with this substance the results are unexpected, from beginning to end.
Kalbus, L. H.; Petrucci, R. H. J. Chem. Educ. 1969, 46, 776.
Stoichiometry |
Quantitative Analysis
Silver tree  Smith, Donald Z.
A suggestion for improving the silver:copper ratio in the silver tree experiment.
Smith, Donald Z. J. Chem. Educ. 1968, 45, 275.
Stoichiometry |
Reactions
The stoichiometry of an oxidation-reduction reaction  Latimer, George W., Jr.
A short note on the titration of hydrazine sulfate with standard bromate in the presence of sodium molybdate that requires students to identify the products through the use of some elementary qualitative analysis.
Latimer, George W., Jr. J. Chem. Educ. 1967, 44, 537.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Titration / Volumetric Analysis |
Qualitative Analysis
The stoichiometry of copper sulfide formed in an introductory laboratory exercise  Dingledy, David; Barnard, Walther M.
The preparation of copper sulfide is used as an introductory chemistry laboratory exercise to demonstrate the law of constant proportions.
Dingledy, David; Barnard, Walther M. J. Chem. Educ. 1967, 44, 242.
Stoichiometry |
Synthesis
The relationship between Avogadro's Principle and the Law of Gay-Lussac  Feifer, Nathan
Teaching Avogadro's Principle as an explanation of the phenomena described by Gay-Lussac's Law gives the instructor an opportunity to stress some of the basic assumptions in chemistry and to highlight the logic implicit in Avogadro's reasoning.
Feifer, Nathan J. Chem. Educ. 1966, 43, 411.
Stoichiometry |
Gases
Evaluation of Avogadro's number: A general chemistry experiment  Henry, Paul S.
The method of J. Perin for evaluating Avogadro's number can be simplified by making use of suspensions of latex spherules by Dow.
Henry, Paul S. J. Chem. Educ. 1966, 43, 251.
Stoichiometry
Molecules versus moles  Guggenheim, E. A.
Now that the mass of molecules is known with great accuracy, there is nothing to be gained in continuing to use moles.
Guggenheim, E. A. J. Chem. Educ. 1966, 43, 250.
Stoichiometry |
Nomenclature / Units / Symbols
Experimental approach to stoichiometry. In first-year chemistry at Northwestern  King, L. Carroll; Cooper, Milton
Presents five experiments in which students are given a minimal set of directions and a simply stated objective.
King, L. Carroll; Cooper, Milton J. Chem. Educ. 1965, 42, 464.
Stoichiometry |
Coordination Compounds |
Undergraduate Research |
Aqueous Solution Chemistry |
Solutions / Solvents |
Precipitation / Solubility |
Titration / Volumetric Analysis
Minimum molecular weight approach for determining empirical formulas  Harwood, H. James
Describes the determination of empirical formulas from "minimum molecular weight," the molecular weight divided by the number of atoms of an element present in a molecule.
Harwood, H. James J. Chem. Educ. 1965, 42, 222.
Molecular Properties / Structure |
Stoichiometry
Some experiments on the stoichiometry of reactions  Tietzie, H. R.
Students establish the stoichiometry of several reactions through volumetric analysis.
Tietzie, H. R. J. Chem. Educ. 1963, 40, 344.
Stoichiometry |
Titration / Volumetric Analysis
Letters to the editor  Swayze, Donald R.
Examines balancing chemical equations.
Swayze, Donald R. J. Chem. Educ. 1963, 40, 269.
Stoichiometry |
Industrial Chemistry
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Writing a chemical equation from titration data: Experiment for general chemistry  State, Harold M.
Students titrate phosphoric acid with sodium hydroxide to determine the chemical formula of Na2HPO4.
State, Harold M. J. Chem. Educ. 1962, 39, 297.
Acids / Bases |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Stoichiometry
Moles and equivalents: Quantities of matter  Cohen, Irwin
Examines the various means of describing and measuring quantities of matter, including the mole and the equivalent.
Cohen, Irwin J. Chem. Educ. 1961, 38, 555.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Foy, John R.
Suggests a modification to an earlier proposed definition for the term mole.
Foy, John R. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Bieber, Theodore I.
Provides a concise definition for the mole.
Bieber, Theodore I. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Cohen, Irwin
Proposes use of the term cardinal weight.
Cohen, Irwin J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
The mole and related quantities  Guggenheim, E. A.
Examines some of the terminology associated with the mole and expressing amounts of substances.
Guggenheim, E. A. J. Chem. Educ. 1961, 38, 86.
Stoichiometry |
Nomenclature / Units / Symbols
Balancing organic redox equations  Burrell, Harold P. C.
This paper presents a method for balancing organic redox equations based on the study of structural formulas and an artificial device - the use of hypothetical free radicals.
Burrell, Harold P. C. J. Chem. Educ. 1959, 36, 77.
Stoichiometry |
Oxidation / Reduction |
Free Radicals
Initial ratio of reactants to give, at equilibrium, a maximum yield of products  Haslam, E.
Derivation of the initial ratio of reactants to give, at equilibrium, a maximum yield of products.
Haslam, E. J. Chem. Educ. 1958, 35, 471.
Stoichiometry |
Chemometrics
Thought stimulation by demonstration experiments  Stone, Hosmer W.
Two projects are presented in which students are asked to predict the results of certain proposed experiments.
Stone, Hosmer W. J. Chem. Educ. 1958, 35, 349.
Stoichiometry
Solution of problems in chemistry  Trousdale, Everett A.
Presents a method for analyzing and solving mole calculations.
Trousdale, Everett A. J. Chem. Educ. 1958, 35, 299.
Chemometrics |
Stoichiometry
Letters to the editor  Saxena, Satish Chandra
The author offers a restatement of Avogadro's law.
Saxena, Satish Chandra J. Chem. Educ. 1956, 33, 188.
Gases |
Stoichiometry
The laws of definite composition and of multiple proportions: A graphical approach  Fiekers, B. A.
The method presented here minimizes mathematical operations so that a fuller meaning of the laws of definite composition and of multiple proportions can be realized.
Fiekers, B. A. J. Chem. Educ. 1955, 32, 89.
Stoichiometry
Material balances and redox equations  Bennett, George W.
It is the purpose of this paper to remind teachers of a third method of balancing redox equations that does not depend on rule-of-thumb empiricism but relies on the conservation of matter.
Bennett, George W. J. Chem. Educ. 1954, 31, 324.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Otis Coe Johnson and redox equations  Bennett, George W.
It is the purpose of this paper to point out what is basic verity and what is empiricism in Johnson's method for balancing oxidation-reduction equations.
Bennett, George W. J. Chem. Educ. 1954, 31, 157.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
An experiment on the law of multiple proportions  Secrist, John H.
It is suggested that the reduction of cuprous and cupric oxides serves as a satisfactory laboratory demonstration of the law of multiple proportions.
Secrist, John H. J. Chem. Educ. 1952, 29, 283.
Stoichiometry |
Oxidation / Reduction
On accenting observations in chemistry  Campbell, J. A.
A chemical equations is, for many a student, such a complete abstraction that he would be hard put to describe the actual observations that would be made in a process for which he was supplied the complete equation.
Campbell, J. A. J. Chem. Educ. 1951, 28, 634.
Reactions |
Stoichiometry |
Nomenclature / Units / Symbols