TIGER

Journal Articles: 20 results
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
The Discovery-Oriented Approach to Organic Chemistry. 6. Selective Reduction in Organic Chemistry: Reduction of Aldehydes in the Presence of Esters Using Sodium Borohydride  Ashvin R. Baru and Ram S. Mohan
Describes two discovery oriented lab experiments involving the chemoselective reduction of vanillin acetate and methyl 4-formylbenzoate in the presence of esters using sodium borohydride, followed by product identification using 1H and 13C NMR spectroscopy.
Baru, Ashvin R.; Mohan, Ram S. J. Chem. Educ. 2005, 82, 1674.
NMR Spectroscopy |
Alcohols |
Aldehydes / Ketones |
Esters |
Oxidation / Reduction |
Thin Layer Chromatography |
Synthesis
An Aldehyde Derivative  J. Hodge Markgraf and Bo Yoon Choi
A system in which aldehydes are condensed with 1,2-benzenedimethylthiol in the presence of anhydrous ferric chloride on silica gel to give 3-substituted 1,5-dihyhdro-2,4-benzodithiepines. Melting points of the derivatives were taken as a means of identification of unknown compounds.
Markgraf, J. Hodge; Choi, Bo Yoon. J. Chem. Educ. 1998, 75, 222.
Aldehydes / Ketones |
Synthesis
Acetone and Ethyl Acetate in Commercial Nail Polish Removers: A Quantitative NMR Experiment Using an Internal Standard  David W. Clarke
The qualitative and quantitative analysis of commercial nail polish removers is performed on a 60 MHz NMR spectrometer. After taking NMR spectra of the polish removers, students can make peak assignments for the known components of acetone and ethyl acetate. Using these spectra, students are also able to identify the unknown alcohol present in the remover as ethanol.
Clarke, David W. J. Chem. Educ. 1997, 74, 1464.
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Aldehydes / Ketones
Determination of Formaldehyde in Cigarette Smoke  Jon W. Wong, Kenley K. Ngim, Jason P. Eiserich, Helen C. H. Yeo, Takayuki Shibamoto, and Scott A. Mabury
This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode).
Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A. J. Chem. Educ. 1997, 74, 1100.
Learning Theories |
Chromatography |
Quantitative Analysis |
Separation Science |
Aldehydes / Ketones |
Applications of Chemistry
Baeyer-Villiger Oxidation of Indane-1-ones: Monitoring of the Reaction by VPC and IR Spectroscopy  Elie Stephan
Procedure for the Baeyer-Villiger oxidation of indane-1-ones.
Stephan, Elie. J. Chem. Educ. 1995, 72, 1142.
IR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Oxidation / Reduction |
Aldehydes / Ketones
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
Schiff base puzzle project.  Todd, David.
Students pick an unknown substituted aniline and a substituted benzaldehyde, produces the corresponding Schiff base from them, and compares its melting point to those of 25 possible Schiff bases (their structures and melting points being given).
Todd, David. J. Chem. Educ. 1992, 69, 584.
Qualitative Analysis |
Aldehydes / Ketones |
Amines / Ammonium Compounds
The palladium-catalyzed oxidation of 2-vinylnaphthalene: A microscale organic synthesis experiment   Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R.
The Wacker oxidation experiment as described is cost-efficient due to the small scale employed, and is a valuable addition to the undergraduate organic curriculum.
Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R. J. Chem. Educ. 1990, 67, 340.
Microscale Lab |
Synthesis |
Alkynes |
Aldehydes / Ketones |
Oxidation / Reduction
The subjection of glutaraldehyde to the Tollens test  Hill, William D., Jr.
Redox equations have been established for the Tollens test with respect to compounds containing two aldehyde groups such as glutaraldehyde.
Hill, William D., Jr. J. Chem. Educ. 1990, 67, 329.
Aldehydes / Ketones |
Oxidation / Reduction
A problem involving organic qualitative analysis  Silvert, D. J.
Five different organic compounds are to be identified from the result of three simple qualitative tests on each unknown (dichromate, DNPH, and iodoform tests).
Silvert, D. J. J. Chem. Educ. 1987, 64, 971.
Qualitative Analysis |
Alcohols |
Aldehydes / Ketones
Classification test for aldehydes involving phase transfer catalysis  Durst, H. Dupont; Gokel, George W.
Although common spectroscopic methods have largely supplanted the more classical methods for distinguishing aldehydes from ketones in many applications, aldehyde classification tests remain very useful in actual laboratory practice as well as important pedagogical device in qualitative organic chemistry.
Durst, H. Dupont; Gokel, George W. J. Chem. Educ. 1978, 55, 206.
Aldehydes / Ketones |
Qualitative Analysis
The photoisomerization of cyclic ketones: An experiment in organic chemistry  Haas, J. W., Jr.
This experiment deals with parameters such as the nature of the excited state, effect of triplet quenchers on product formation, chemical structure and reaction rate and quantum yield when cyclopentanone and cyclohexanone are irradiated at 254nm. These cyclic ketones provide a variety of photolysis information in a short time span, are conveniently analyzed by gas chromatography, and are readily available at the requisite levels of purity.
Haas, J. W., Jr. J. Chem. Educ. 1974, 51, 346.
Aldehydes / Ketones |
Aromatic Compounds |
Photochemistry |
Diastereomers |
Gas Chromatography
Molecular weight determination of aldehydes and ketones. A quantitative organic experiment  Steinhaus, Ralph K.
The reaction between semicarbazide and an unknown ketone is used to determine molecular weight.
Steinhaus, Ralph K. J. Chem. Educ. 1973, 50, 293.
Physical Properties |
Quantitative Analysis |
Aldehydes / Ketones |
Oxidation / Reduction
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Acids as derivatives of aldehydes prepared with silver oxides  Thomason, Sandra C.; Kubler, Donald G.
Examines the use of silver(i) and silver(II) oxide to convert aldehydes into acid derivatives.
Thomason, Sandra C.; Kubler, Donald G. J. Chem. Educ. 1968, 45, 546.
Acids / Bases |
Aldehydes / Ketones |
Oxidation / Reduction |
Synthesis
Qualitative test for ketones, aromatic aldehydes, and aliphatic aldehydes  Morrison, James D.
The Bordwell-Wellman solution of chromic anhydride in aqueous sulfuric acid is an excellent reagent for distinguishing aldehydes from ketones.
Morrison, James D. J. Chem. Educ. 1965, 42, 554.
Qualitative Analysis |
Aldehydes / Ketones |
Aromatic Compounds
A separation and identification experiment for elementary organic chemistry laboratory  Laughton, Paul M.
The student selects a test tube containing two unknowns and is told only that they have been selected from two of three possible groups: a primary or tertiary amine, an aldehyde or ketone, and an acid or phenol. The components are to be separated, their physical properties determined, their categories assigned, and one specific derivative prepared for each.
Laughton, Paul M. J. Chem. Educ. 1960, 37, 133.
Separation Science |
Qualitative Analysis |
Amines / Ammonium Compounds |
Aldehydes / Ketones |
Acids / Bases |
Phenols |
Physical Properties |
Synthesis