TIGER

Journal Articles: 14 results
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of trans-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates  James E. Christensen, Matthew G. Huddle, Jamie L. Rogers, Herbie Yung, and Ram S. Mohan
Presents a microscale, green organic chemistry laboratory experiment that illustrates the utility of metal triflates, especially bismuth triflate, as a Lewis acid catalyst. Bismuth compounds are especially attractive for use as catalysts in organic synthesis because of their low toxicity, low cost, and ease of handling.
Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S. J. Chem. Educ. 2008, 85, 1274.
Catalysis |
Epoxides |
Green Chemistry |
Lewis Acids / Bases |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy
A Three-Step Laboratory Sequence To Prepare a Carbene Complex of Silver(I) Chloride  John P. Canal, Taramatee Ramnial, Lisa D. Langlois, Colin D. Abernethy, and Jason A. C. Clyburne
Presents a multistep inorganic synthesisof N-heterocyclic carbenes that introduces students to modern organometallic chemistry, multinuclear NMR (1H and 13C) spectroscopy, and novel coordination geometries and valence states of carbon.
Canal, John P.; Ramnial, Taramatee; Langlois, Lisa D.; Abernethy, Colin D.; Clyburne, Jason A. C. J. Chem. Educ. 2008, 85, 416.
Coordination Compounds |
NMR Spectroscopy |
Organometallics |
Synthesis
Stereospecific Synthesis of the Geometrical Isomers of a Natural Product  T. Grove, D. DiLella, and E. Volker
Presents an experiment for the synthesis of (Z) and (E) isomers that is presented to students as a puzzle in which they must determine the identity of the major component in anise oil. A necessary part of the analysis is the preparation the (E) and (Z) isomers of anethole. Molecular modeling is used to explore the conformation of and energy difference between isomers.
Grove, T.; DiLella, D.; Volker, E. J. Chem. Educ. 2006, 83, 1055.
Alkenes |
Computational Chemistry |
Gas Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Grubbs's Cross Metathesis of Eugenol with cis-2-Butene-1,4-diol To Make a Natural Product. An Organometallic Experiment for the Undergraduate Lab   Douglass F. Taber and Kevin J. Frankowski
Describes the ruthenium catalyzed cross metathesis of eugenol with cis-1,4-butenediol. The experiment is an excellent example of the powerful selectivity possible with the Grubbs' catalyst, demonstrating the preference for trans over cis alkene formation and for cross metathesis over homodimerization.
Taber, Douglass F.; Frankowski, Kevin J. J. Chem. Educ. 2006, 83, 283.
Alkenes |
Catalysis |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Organometallics |
Stereochemistry |
Synthesis |
Thin Layer Chromatography |
Transition Elements
Fluorous Compounds and Their Role in Separation Chemistry  Maria Angeles Ubeda and Roman Dembinski
Reviews fluorous technology and outlines strategies towards organic synthesis.
Ubeda, Maria Angeles; Dembinski, Roman. J. Chem. Educ. 2006, 83, 84.
Amino Acids |
Catalysis |
Esters |
Green Chemistry |
Separation Science |
Synthesis
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery  John W. Nicholson and Alan Wilson
This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries.
Nicholson, John W.; Wilson, Alan. J. Chem. Educ. 2004, 81, 1362.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones
The Darzens Condensation: Structure Determination through Spectral Analysis and Understanding Substrate Reactivity  R. David Crouch, Michael S. Holden, and Candice A. Romany
The Darzens condensation involves two steps that are typically included in the sophomore organic curriculum: an aldol reaction followed by an intramolecular nucleophilic substitution.
Crouch, R. David; Holden, Michael S.; Romany, Candice A. J. Chem. Educ. 2004, 81, 711.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Mechanisms of Reactions |
Aldehydes / Ketones
Simple Preparation and NMR Analysis of mer and fac Isomers of Tris(1,1,1-trifluoro-2,4-pentanedionato)cobalt(III). An Experiment for the Inorganic Chemistry Laboratory  Ashley W. Jensen and Brian A. O'Brien
A one-step procedure for the preparation of tris(1,1,1-trifluoro-2,4-pentanedionato)cobalt(III) from hydrated cobalt(II) carbonate and 10% hydrogen peroxide, in which tert-butyl alcohol is used as a component of the solvent.
Jensen, Ashley W.; O'Brien, Brian A. J. Chem. Educ. 2001, 78, 954.
Chromatography |
Coordination Compounds |
Synthesis |
NMR Spectroscopy |
Stereochemistry
Suzuki Cross-Coupling Reactions: Synthesis of Unsymmetrical Biaryls in the Organic Laboratory  Christopher S. Callam and Todd L. Lowary
Laboratory that exposes students to organometallic chemistry and application of the Suzuki reaction.
Callam, Christopher S.; Lowary, Todd L. J. Chem. Educ. 2001, 78, 947.
Aromatic Compounds |
Metals |
Synthesis |
Organometallics |
Transition Elements |
Mechanisms of Reactions
Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan)  reviewed Alan M. Rosan
Selective review of the burgeoning literature on organic reactions conducted in water or in aqueous media as a reaction cosolvent.
Rosan, Alan M. J. Chem. Educ. 2000, 77, 707.
Aqueous Solution Chemistry |
Reactions |
Synthesis |
Mechanisms of Reactions
Synthesis of Derivatives of (1R)-(-)- and (1S)-(+)-10-Camphorsulfonic Acid  Steven C. Cermak and David F. Wiemer
The preparation of optically active (camphorsulfonyl)oxaziridines from commercially available (1R)-(-) and/or (1S)-(+)10-camphorsulfonic acid provides a clear demonstration of the lack of relationship between absolute configuration and optical rotation. The parent sulfonic acid can be converted to the corresponding acid chloride and then to the sulfonamide, sulfonylimine, and finally to an oxaziridine in a series of practical organic laboratory experiments.
Cermak, Steven C.; Wiemer, David F. J. Chem. Educ. 1999, 76, 1715.
Stereochemistry |
Synthesis |
Aromatic Compounds |
Ethers |
Alcohols |
Aldehydes / Ketones |
Acids / Bases
The Art and Science of Organic and Natural Products Synthesis  K. C. Nicolaou, E. J. Sorensen, and N. Winssinger
In this article, the history of the art and science of organic and natural products synthesis is briefly reviewed and the state of the art is discussed. The impact of this discipline on biology and medicine is amply demonstrated with examples, and projections for future developments in the field are made.
Nicolaou, K. C.; Sorensen, E. J.; Winssinger, N. J. Chem. Educ. 1998, 75, 1225.
Natural Products |
Synthesis |
Medicinal Chemistry |
Applications of Chemistry |
Drugs / Pharmaceuticals
A new method for the oxidation of 4-phenylurazole to 4-phenyltriazolinedione.  Mallakpour, Shadpour E.
The procedures describe the synthesis of 4-phenyl-urazole from ethyl carbazate and then the oxidation of the urazole with NO2-N2O4 to yield 4-phenyl-1,2,4-trizoline-3,5-dione.
Mallakpour, Shadpour E. J. Chem. Educ. 1992, 69, 238.
Oxidation / Reduction |
Aldehydes / Ketones |
Synthesis |
Aromatic Compounds