TIGER

Journal Articles: 52 results
Synthesis of Albendazole Metabolite: Characterization and HPLC Determination  Graciela Mahler, Danilo Davyt, Sandra Gordon, Marcelo Incerti, Ivana Núñez, Horacio Pezaroglo, Laura Scarone, Gloria Serra, Mauricio Silvera, and Eduardo Manta
In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H2O2 in acetic acid. The reaction is environmental friendly, fast, and proceeds with high yield. The crude reaction is analyzed by HPLC chromatography to determine purity. The simplicity of the experiment allows students to study chiral concepts, physicochemical and spectroscopic properties of the compounds, and HPLC determinations.
Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Núñez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo. J. Chem. Educ. 2008, 85, 1652.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
HPLC |
Medicinal Chemistry |
Organosulfur Compounds |
Oxidation / Reduction |
Synthesis
The Synthesis of N-Benzyl-2-azanorbornene via Aqueous Hetero Diels–Alder Reaction  Xavier Sauvage and Lionel Delaude
Characterization of the product of this organic synthesis through IR and NMR data analysis provides valuable material to familiarize students with different types of protonproton coupling patterns and their typical ranges, serves to illustrate the concepts of green chemistry and atom efficiency, and can be used to exemplify structural analysis and computational studies.
Sauvage, Xavier; Delaude, Lionel. J. Chem. Educ. 2008, 85, 1538.
Alkenes |
Aqueous Solution Chemistry |
Conformational Analysis |
Green Chemistry |
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
Frank Westheimer's Early Demonstration of Enzymatic Specificity  Addison Ault
Reviews one of the most significant accomplishments of one of the most respected chemists of the 20th centurya series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize enantiotopic and diastereotopic relationships of atoms, or groups of atoms, within molecules.
Ault, Addison. J. Chem. Educ. 2008, 85, 1246.
Asymmetric Synthesis |
Bioorganic Chemistry |
Catalysis |
Chirality / Optical Activity |
Enantiomers |
Enzymes |
Isotopes |
Nucleophilic Substitution |
Oxidation / Reduction |
Stereochemistry
Organic Synthesis: Strategy and Control (Paul Wyatt and Stuart Warren)  Richard Pagni
Organic Synthesis is an excellent resource on organic synthesis. Because of the enormous breadth and complexity of the subject, being able to organize the material into coherent units as well as interconnecting them into a coherent whole is key to writing a successful book on organic synthesis. Wyatt and Warren show this skill in abundance.
Pagni, Richard. J. Chem. Educ. 2008, 85, 785.
Synthesis |
Mechanisms of Reactions
The Same and Not the Same: Chirality, Topicity, and Memory of Chirality  Wolfgang H. Kramer and Axel G. Griesbeck
Describes a simple molecular approach that aids students in learning stereochemical terms, definitions, and concepts, particularly when chemical structures are drawn in two dimensions.
Kramer, Wolfgang H.; Griesbeck, Axel G. J. Chem. Educ. 2008, 85, 701.
Chirality / Optical Activity |
Stereochemistry
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Keeping Your Students Awake: Facile Microscale Synthesis of Modafinil, a Modern Anti-Narcoleptic Drug  Evangelos Aktoudianakis, Rui Jun Lin, and Andrew P. Dicks
Describes the microscale preparation of modafinil, a pharmaceutical recently approved for the treatment of narcolepsy, by a sulfide oxidation reaction. An unusual feature of modafinil is the presence of a chiral sulfoxide functionality where a sulfur atom acts as a stereocenter, demonstrating that atoms other than carbon can act as centers of chirality.
Aktoudianakis, Evangelos; Lin, Rui Jun; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 1832.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Synthesis |
Mechanisms of Reactions |
IR Spectroscopy |
NMR Spectroscopy |
Microscale Lab |
Stereochemistry
Chemical Aspects of General Anesthesia: Part II. Current Practices  Robert Brunsvold and Daryl L. Ostercamp
With the basic elements of balanced general anesthesia in place by the 1950s, the focus turned to developing safer and more effective agents and to improving procedures. During the last half-century a new generation of intravenous induction anesthetics, inhalational anesthetics, and muscle relaxants has emerged.
Brunsvold, Robert; Ostercamp, Daryl L. J. Chem. Educ. 2006, 83, 1826.
Bioorganic Chemistry |
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Synthesis
Chemical Aspects of General Anesthesia: Part I. From Ether to Halothane  Robert Brunsvold and Daryl L. Ostercamp
Summarizes general anesthesia from 1846 to 1956. Events leading up to the adoption of a "balanced" approach, where a sequence of individual compounds is used rather than a single agent, are described.
Brunsvold, Robert; Ostercamp, Daryl L. J. Chem. Educ. 2006, 83, 1821.
Acids / Bases |
Bioorganic Chemistry |
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Synthesis
The Step-by-Step Robinson Annulation of Chalcone and Ethyl Acetoacetate. An Advanced Undergraduate Project in Organic Synthesis and Structural Analysis  Lionel Delaude, Jean Grandjean, and Alfred F. Noels
The Robinson annulation is a three-step process involving a Michael addition followed by an internal aldol condensation and a dehydration. It is possible to stop the reaction after every step and to isolate the three products, allowing students to confirm the validity of the stepwise mechanism and develop a more thorough understanding of the whole process.
Delaude, Lionel; Grandjean, Jean; Noels, Alfred F. J. Chem. Educ. 2006, 83, 1225.
Catalysis |
Chirality / Optical Activity |
Conformational Analysis |
Diastereomers |
IR Spectroscopy |
Synthesis |
NMR Spectroscopy |
Stereochemistry
Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory  Jacqueline Bennett, Kristen Meldi, and Christopher Kimmell II
In this experiment students prepare and analyze N-p-methoxyphenyl (N-PMP) alpha-imino ethyl glyoxalate, an imine that has been used in the synthesis of biologically active molecules. The stability and versatility of this imine allow it to be used in subsequent reactions, offering a variety of possible multistep synthetic strategies.
Bennett, Jacqueline; Meldi, Kristen; Kimmell, Christopher, II. J. Chem. Educ. 2006, 83, 1221.
Aldehydes / Ketones |
Gas Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis
Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions  Kendrew K. W. Mak, Y. M. Lai, and Yuk-Hong Siu
Peroxy acids and alkaline H2O2 are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with a,-unsaturated carbonyl compounds. The selectivity of these two reagents on carvone, a naturally occurring compound that contains both types of C=C bonds, is investigated.
Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong. J. Chem. Educ. 2006, 83, 1058.
Alkenes |
Chromatography |
Epoxides |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Mechanisms of Reactions
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
Fluorous Compounds and Their Role in Separation Chemistry  Maria Angeles Ubeda and Roman Dembinski
Reviews fluorous technology and outlines strategies towards organic synthesis.
Ubeda, Maria Angeles; Dembinski, Roman. J. Chem. Educ. 2006, 83, 84.
Amino Acids |
Catalysis |
Esters |
Green Chemistry |
Separation Science |
Synthesis
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
Polypyrazolylborates: Scorpionates  Swiatoslaw Trofimenko
Key features of polypyrazolylborates (also known as scorpionates because of certain specific features of their coordination chemistry) and examples of their use in modeling biologically active compounds are briefly presented.
Trofimenko, Swiatoslaw. J. Chem. Educ. 2005, 82, 1715.
Coordination Compounds |
Heterocycles |
Synthesis |
Bioinorganic Chemistry |
Molecular Properties / Structure
Enantiomeric Resolution of (±)-Mandelic Acid by (1R,2S)-(–)-Ephedrine. An Organic Chemistry Laboratory Experiment Illustrating Stereoisomerism  Marsha R. Baar and Andrea L. Cerrone-Szakal
There has been an increasing need, particularly in the pharmaceutical industry, to prepare chiral substances in single-isomer form. A chiral technique that makes an excellent introductory organic chemistry experiment is enantiomeric resolution. The classical resolution of ()-mandelic acid using the chiral amine, (1R,2S)-()-ephedrine, was adapted for use in introductory organic chemistry lab curricula.
Baar, Marsha R.; Cerrone-Szakal, Andrea L. J. Chem. Educ. 2005, 82, 1040.
Acids / Bases |
Chirality / Optical Activity |
Separation Science |
Stereochemistry |
Diastereomers |
Enantiomers
The Sharpless Asymmetric Dihydroxylation in the Organic Chemistry Majors Laboratory  Christopher J. Nichols and Melissa R. Taylor
A six-period laboratory exercise has been developed that uses the convenient Sharpless asymmetric dihydroxylation (AD) to illustrate the principles of a chiral synthesis. Using one particular alkene, students perform a racemic dihydroxylation, an AD using a commercially available AD-mix, and then an AD using an ester derivative of dihydroquinidine that they synthesized themselves. The structures of the products are confirmed with 1H NMR spectroscopy and the enantiomeric excesses of the diols are determined using a chiral GC column.
Nichols, Christopher J.; Taylor, Melissa R. J. Chem. Educ. 2005, 82, 105.
Chirality / Optical Activity |
Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Alkenes |
Addition Reactions
Simple Epoxide Formation for the Organic Laboratory Using Oxone  William C. Broshears, John J. Esteb, Jeremy Richter, and Anne M. Wilson
This experiment demonstrates a simple synthesis of an epoxide and formation of a secondary oxidizing agent.
Broshears, William C.; Esteb, John J.; Richter, Jeremy; Wilson, Anne M. J. Chem. Educ. 2004, 81, 1018.
Oxidation / Reduction |
Synthesis
Chiral Compounds and Green Chemistry in Undergraduate Organic Laboratories: Reduction of a Ketone by Sodium Borohydride and Baker's Yeast  Nicola Pohl, Allen Clague, and Kimberly Schwarz
Students compare biological and chemical means of introducing chirality into a molecule by investigating the reduction of a ketoester with two different reducing agents.
Pohl, Nicola; Clague, Allen; Schwarz, Kimberly. J. Chem. Educ. 2002, 79, 727.
Chirality / Optical Activity |
Oxidation / Reduction |
Synthesis |
Green Chemistry
The Importance of Non-Bonds in Coordination Compounds  Michael Laing
Significance of noncovalent interactions in determining the structure and behavior of coordination compounds.
Laing, Michael. J. Chem. Educ. 2001, 78, 1400.
Noncovalent Interactions |
Coordination Compounds |
Kinetics |
Stereochemistry |
Molecular Properties / Structure
Synthesis and Use of Jacobsen's Catalyst: Enantioselective Epoxidation in the Introductory Organic Laboratory  John Hanson
Laboratory series to introduce students to an important synthetic method and many common techniques used in running reactions, purifying products, and characterizing compounds.
Hanson, John. J. Chem. Educ. 2001, 78, 1266.
Catalysis |
Chirality / Optical Activity |
Synthesis |
Organometallics |
Stereochemistry |
Epoxides |
Enantiomers |
Aromatic Compounds
Suzuki Cross-Coupling Reactions: Synthesis of Unsymmetrical Biaryls in the Organic Laboratory  Christopher S. Callam and Todd L. Lowary
Laboratory that exposes students to organometallic chemistry and application of the Suzuki reaction.
Callam, Christopher S.; Lowary, Todd L. J. Chem. Educ. 2001, 78, 947.
Aromatic Compounds |
Metals |
Synthesis |
Organometallics |
Transition Elements |
Mechanisms of Reactions
Introducing Chiroscience into the Organic Laboratory Curriculum  Kenny B. Lipkowitz, Tim Naylor, and Keith S. Anliker
"Chiroscience" is a young but robust industry linking science and technology with chemistry and biology; includes description of an asymmetric reduction of a ketone followed by an assessment of the enantiomeric excess by GC using a chiral stationary phase.
Lipkowitz, Kenny B.; Naylor, Tim; Anliker, Keith S. J. Chem. Educ. 2000, 77, 305.
Chirality / Optical Activity |
Chromatography |
Mechanisms of Reactions |
Synthesis |
Separation Science |
Stereochemistry |
Gas Chromatography |
Aldehydes / Ketones
Catalytic Asymmetric Epoxidation Using a Fructose-Derived Catalyst  Andy Burke, Patrick Dillon, Kyle Martin, and T. W. Hanks
Modern epoxidation methods are able to create two adjacent stereocenters with very high enantioselectivity. Opening of the epoxides with nucleophiles permits rapid entry into complex organic systems, making this powerful synthetic methodology one of the fundamental reactions in organic synthesis.
Burke, Andy; Dillon, Patrick; Martin, Kyle; Hanks, Timothy W. J. Chem. Educ. 2000, 77, 271.
Catalysis |
NMR Spectroscopy |
Stereochemistry |
Enantiomers
Sharpless Asymmetric Dihydroxylation: Effect of Alkene Structure on Rates and Selectivity  Alan C. Spivey, R. Hanson, N. Scorah, and S. J. Thorpe
Each student is assigned an alkene and performs three dihydroxylation reactions: one racemic and two enantioselective variants. The products are characterized by 1H NMR, IR, MS, [a]D20, and chiral chromatography (HPLC or GC). Comparison by the students of their results with those reported in the literature, particularly the extensive work of Sharpless, allows an exploration of the validity of Sharpless's mnemonic for predicting the stereochemical outcome of these reactions.
Spivey, Alan C.; Hanson, R.; Scorah, N.; Thorpe, S. J. J. Chem. Educ. 1999, 76, 655.
Synthesis |
Catalysis |
Stereochemistry |
Organometallics |
Molecular Properties / Structure
The Art and Science of Organic and Natural Products Synthesis  K. C. Nicolaou, E. J. Sorensen, and N. Winssinger
In this article, the history of the art and science of organic and natural products synthesis is briefly reviewed and the state of the art is discussed. The impact of this discipline on biology and medicine is amply demonstrated with examples, and projections for future developments in the field are made.
Nicolaou, K. C.; Sorensen, E. J.; Winssinger, N. J. Chem. Educ. 1998, 75, 1225.
Natural Products |
Synthesis |
Medicinal Chemistry |
Applications of Chemistry |
Drugs / Pharmaceuticals
Molecules, Crystals, and Chirality  Il-Hwan Suh, Koon Ha Park, William P. Jensen, David E. Lewis*
The development of the concept of chirality from the early work of Pasteur, van't Hoff and Le Bel to the work of Cahn, Ingold and Prelog is presented, and the constraints that chirality imposes on the symmetry of molecules - that chiral molecules may not possess an improper axis of rotation - is discussed.
Suh, Il-Hwan; Park, Koon Ha ; Jensen, William P.; Lewis, David E. J. Chem. Educ. 1997, 74, 800.
Crystals / Crystallography |
Molecular Properties / Structure |
Stereochemistry |
X-ray Crystallography
Wöhler's Synthesis of Urea: How Do the Textbooks Report It?  Paul S. Cohen and Stephen M. Cohen
Most general chemistry and organic chemistry textbooks describe Friedrich Whler's synthesis of urea as the moment when modern organic chemistry was born. We surveyed 35 modern and classic texts to learn what each noted of Whler's work
J. Chem. Educ. 1996, 73, 883.
Synthesis
Baeyer-Villiger Oxidation of Indane-1-ones: Monitoring of the Reaction by VPC and IR Spectroscopy  Elie Stephan
Procedure for the Baeyer-Villiger oxidation of indane-1-ones.
Stephan, Elie. J. Chem. Educ. 1995, 72, 1142.
IR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Oxidation / Reduction |
Aldehydes / Ketones
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
Incorporating Heterotopicity into Organic Chemistry  Thall, Edwin
This paper reviews topological relationships and suggests how to incorporate heterotopic concepts into the contemporary chemistry curriculum.
Thall, Edwin J. Chem. Educ. 1994, 71, 1034.
Stereochemistry |
Crystal Field / Ligand Field Theory
Grasping the Concepts of Stereochemistry  Barta, Nancy S.; Stille, John R.
An alternative procedure for the determination of R or S configuration for chiral molecules.
Barta, Nancy S.; Stille, John R. J. Chem. Educ. 1994, 71, 20.
Stereochemistry |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Chirality / Optical Activity
Optical activity can be created from "nothing"  Caswell, Lesley; Garcia-Garibay, Miguel A.; Scheffer, John R.; Trotter, James
Optically active products can be generated from achiral reactants.
Caswell, Lesley; Garcia-Garibay, Miguel A.; Scheffer, John R.; Trotter, James J. Chem. Educ. 1993, 70, 785.
Enantiomers |
Stereochemistry
A derivation of the Masamune rule of multiplicativity in double asymmetric induction  Nakayama, Kensaku
The ability to prepare one diastereomeric or enantiomeric isomer in excess in a given chemical transformation where a stereoisomeric distribution of products is possible is currently one of the most highly sought goals in the field of synthetic organic chemistry.
Nakayama, Kensaku J. Chem. Educ. 1990, 67, 20.
Synthesis |
Diastereomers |
Enantiomers
The resolution of a completely inorganic coordination compound: A modified classic experiment for the inorganic laboratory  Yasui, Takaji; Ama, Tomoharu; Kauffman, George B.
Reproducing Alfred Werner's experiment demonstrating the Co(III) possesses an octahedral configuration.
Yasui, Takaji; Ama, Tomoharu; Kauffman, George B. J. Chem. Educ. 1989, 66, 1045.
Coordination Compounds |
Synthesis |
Diastereomers
Overlooked opportunities in stereochemistry: Part II. The neglected connection between metal-ammines (Alfred Werner) and organic onium compounds (William Jackson Pope)  Kauffman, George B.; Bernal, Ivan
The authors have shown how the work of each of two great stereochemists could have mutually enriched, reinforced, and accelerated the contributions of the other.
Kauffman, George B.; Bernal, Ivan J. Chem. Educ. 1989, 66, 293.
Coordination Compounds |
Stereochemistry
Van't Hoff, Le Bel, and the development of stereochemistry: A reassessment  Grossman, Robert B.
The author gives a review of and possible explanations for Van't Hoff's inconsistencies.
Grossman, Robert B. J. Chem. Educ. 1989, 66, 30.
Stereochemistry |
Group Theory / Symmetry
A synthesis of chrysanthemic ester: An undergraduate experiment  Kelly, Lawrence F.
Procedure for producing a mixture of cis- and trans-ethyl chrysanthemates.
Kelly, Lawrence F. J. Chem. Educ. 1987, 64, 1061.
Esters |
Synthesis |
Catalysis |
Diastereomers |
Stereochemistry
Stereochemistry (Ramsay, O. Bertrand)  Kauffman, George B.
Provides a survey of stereochemistry from its inception to the 1960s.
Kauffman, George B. J. Chem. Educ. 1985, 62, A189.
Stereochemistry |
Molecular Properties / Structure
Guidebook to organic synthesis (Mackie, R.K.;Smith, D.M.)  Wade, L. G., Jr.
A review of a text that was designed as a text for an advanced undergraduate course in organic synthesis.
Wade, L. G., Jr. J. Chem. Educ. 1983, 60, A320.
Synthesis
Stereochemistry and macromolecules: Principles and applications  Quirk, Roderic P.
This article was written to provide an introduction to the basic concepts of polymer stereochemistry and their applications.
Quirk, Roderic P. J. Chem. Educ. 1981, 58, 540.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Quarternary ammonia salts: Some recent applications in organic synthesis  Varughese, Pothen
Presents a variety of applications for quarternary ammonia salts, including as reaction media, a reagent for mesylation, catalytic hydrogenation, and micellar and phase-transfer catalysis.
Varughese, Pothen J. Chem. Educ. 1977, 54, 666.
Synthesis |
Amines / Ammonium Compounds |
Micelles |
Catalysis
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Resolution and stereochemistry of asymmetric silicon, germanium, tin, and lead compounds  Belloli, Robert
It is the purpose of this review to summarize the results of stereochemical studies on compounds containing an asymmetric group IVA atom.
Belloli, Robert J. Chem. Educ. 1969, 46, 640.
Stereochemistry |
Organometallics |
Enantiomers |
Mechanisms of Reactions |
Nucleophilic Substitution
A modern look at Markovnikov's rule and the peroxide effect  Isenberg, Norbert; Grdinic, Marcel
Presents a "carbonium ion" definition of Markovnikov's Rule and examines the peroxide effect.
Isenberg, Norbert; Grdinic, Marcel J. Chem. Educ. 1969, 46, 601.
Mechanisms of Reactions |
Stereochemistry |
Diastereomers |
Free Radicals |
Alkenes |
Addition Reactions
Introduction to stereochemistry (Mislow, Kurt)  Petersen, Quentin R.

Petersen, Quentin R. J. Chem. Educ. 1966, 43, A272.
Stereochemistry
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
The unraveling of geometric isomerism and tautomerism  Ihde, Aaron J.
Examines the work of Van't Hoff in unraveling isomerism due to carbon-carbon double bonds using fumaric and maleic acids as exemplars.
Ihde, Aaron J. J. Chem. Educ. 1959, 36, 330.
Molecular Properties / Structure |
Stereochemistry |
Diastereomers