TIGER

Journal Articles: 27 results
Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical  Kate J. Graham, Brian J. Johnson, T. Nicholas Jones, Edward J. McIntee, and Chris P. Schaller
Describes an open-ended laboratory practical that challenges students to evaluate when different purification techniques are appropriate.
Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P. J. Chem. Educ. 2008, 85, 1644.
IR Spectroscopy |
Microscale Lab |
Molecular Properties / Structure |
NMR Spectroscopy |
Physical Properties |
Separation Science
The Resolution of Ibuprofen, 2-(4′-Isobutylphenyl)propionic Acid  James V. McCullagh
In this experiment the over-the-counter pain reliever ibuprofen is resolved using (S)-(-)-a-phenethylamine as the resolving agent. This procedure has several key advantages over previous resolution experiments.
McCullagh, James V. J. Chem. Educ. 2008, 85, 941.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Enantiomers |
Quantitative Analysis |
Separation Science
Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project  Timothy R. Hightower and Jay D. Heeren
Presents a peer-led, problem-solving organic laboratory exercise that provide students with an opportunity to produce a more efficient recrystallization solvent in an industrial environment.
Hightower, Timothy R.; Heeren, Jay D. J. Chem. Educ. 2006, 83, 1663.
Carboxylic Acids |
Industrial Chemistry |
Separation Science |
Solutions / Solvents
Enantiomeric Resolution of (±)-Mandelic Acid by (1R,2S)-(–)-Ephedrine. An Organic Chemistry Laboratory Experiment Illustrating Stereoisomerism  Marsha R. Baar and Andrea L. Cerrone-Szakal
There has been an increasing need, particularly in the pharmaceutical industry, to prepare chiral substances in single-isomer form. A chiral technique that makes an excellent introductory organic chemistry experiment is enantiomeric resolution. The classical resolution of ()-mandelic acid using the chiral amine, (1R,2S)-()-ephedrine, was adapted for use in introductory organic chemistry lab curricula.
Baar, Marsha R.; Cerrone-Szakal, Andrea L. J. Chem. Educ. 2005, 82, 1040.
Acids / Bases |
Chirality / Optical Activity |
Separation Science |
Stereochemistry |
Diastereomers |
Enantiomers
A Discovery Approach to Three Organic Laboratory Techniques: Extraction, Recrystallization, and Distillation  Gail Horowitz
In each experiment, one or more parameters, such as solvent volume, time, or boiling point difference, is varied. Students compare the results of all variations and draw conclusions as to the underlying principles. The article concludes with an assessment of the effectiveness of these experiments.
Horowitz, Gail. J. Chem. Educ. 2003, 80, 1039.
Separation Science
Like Dissolves Like: A Guided Inquiry Experiment for Organic Chemistry  Ingrid Montes, Chunqiu Lai, and David Sanabria
A guided-inquiry experience designed to illustrate factors that influence the solubility of organic compounds.
Montes, Ingrid; Lai, Chunqiu; Sanabria, David. J. Chem. Educ. 2003, 80, 447.
Learning Theories |
Solutions / Solvents |
Separation Science
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide  Martin Hulce and David W. Marks
Six representative alcohols are oxidized to the corresponding aldehyde or ketone, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Hulce, Martin; Marks, David W. J. Chem. Educ. 2001, 78, 66.
Catalysis |
Oxidation / Reduction |
Reactions |
Kinetics |
Chromatography |
Gas Chromatography |
Separation Science |
NMR Spectroscopy |
IR Spectroscopy |
Alcohols |
Phenols
Isolation of Curcumin from Turmeric  Andrew M. Anderson, Matthew S. Mitchell, and Ram S. Mohan
The active ingredient in turmeric is curcumin, which is approximately 2% by weight of the root of turmeric. We have developed two simple procedures for isolation of curcumin from turmeric, making this a new and interesting natural product isolation experiment.
Anderson, Andrew M.; Mitchell, Matthew S.; Mohan, Ram S. J. Chem. Educ. 2000, 77, 359.
Chromatography |
Medicinal Chemistry |
Natural Products |
Synthesis |
Separation Science |
Aromatic Compounds
Synthesis and Separation of a Diastereomeric Sulfonium Ion by Capillary Zone Electrophoresis  Francisco A. Valenzuela, Thomas K. Green, and Darwin B. Dahl
An undergraduate laboratory exercise utilizing capillary zone electrophoresis in the analysis of the student-synthesized sulfonium ion sec-butylmethyl-p-tolylsulfonium tetrafluoroborate is presented. The sulfonium ion contains two stereogenic centers and thereby yields four optical isomers.
Valenzuela, Francisco A.; Green, Thomas K.; Dahl, Darwin B. J. Chem. Educ. 1998, 75, 1590.
Electrophoresis |
Stereochemistry |
NMR Spectroscopy |
Diastereomers |
Separation Science |
Synthesis
An Integrated Extraction/Crystallization/Distillation Experiment  Claude Amsterdamsky
An organic chemistry experiment that involves the extraction, crystallization, and distillation of a 3-component mixture over two 4-hour laboratory periods.
Amsterdamsky, Claude. J. Chem. Educ. 1998, 75, 219.
Separation Science
Organic Qualitative Analysis at the Microscale Level  Craig, Rhoda E. R.; Kaufman, Kurt K.
Project requiring students to identify pure unknowns and the components of mixtures using a variety of chromatography and spectrometry techniques.
Craig, Rhoda E. R.; Kaufman, Kurt K. J. Chem. Educ. 1995, 72, A102.
NMR Spectroscopy |
IR Spectroscopy |
Chromatography |
Separation Science |
Qualitative Analysis |
Acids / Bases
Isolation of piperine from black pepper  Epstein, William W.; Netz, David F.; Seidel, Jimmy L.
A new and interesting natural product for isolation in the organic chemistry lab. This procedure also introduces students to many important instruments and procedures in organic chemistry.
Epstein, William W.; Netz, David F.; Seidel, Jimmy L. J. Chem. Educ. 1993, 70, 598.
Natural Products |
Chromatography |
Separation Science
Microscale filtration  Duarte, Frederick F.; McCoy, Layton L.; Popp, Frank D.
Alternative to Craig tubes or filtered Pasteur pipets.
Duarte, Frederick F.; McCoy, Layton L.; Popp, Frank D. J. Chem. Educ. 1992, 69, A314.
Separation Science |
Microscale Lab |
Laboratory Equipment / Apparatus
Isolation of trimyristin and cholesterol: Two microscale extractions for one laboratory period  Vestling, Martha M.
The major expenses and major safety problems associated with these classic organic experiments are due to the quantities of organic solvents used per student. When these two experiments are converted to microscale, less than 10 mL of organic solvent per student is required for both experiments.
Vestling, Martha M. J. Chem. Educ. 1990, 67, 274.
Microscale Lab |
Natural Products |
Separation Science
Separation of a five-component mixture in the microscale laboratory  O'Hara-Mays, Ellen P.; Yuen, George U.
The separation and purification of a five-component mixture consisting of a strong organic acid (bezoic acid), a weak organic acid (2-naphthol), an organic base (pyridine), and two neutral compounds (1-chlorobutane and toluene).
O'Hara-Mays, Ellen P.; Yuen, George U. J. Chem. Educ. 1989, 66, 961.
Separation Science |
Microscale Lab |
Acids / Bases
cis and trans-Stilbenes: Chromatographic separation and photochemical isomerization  Levine, Samuel G.; Barhoriak, Kathleen Doubek; Cho, Ho S.
An organic chemistry laboratory that has historic significance.
Levine, Samuel G.; Barhoriak, Kathleen Doubek; Cho, Ho S. J. Chem. Educ. 1988, 65, 79.
Separation Science |
Photochemistry |
Diastereomers |
Chromatography
A Wittig reaction that gives only one stereoisomer  Silversmith, Ernest F.
This popular experiment can be extended to illustrate the use of spectroscopy to elucidate stereochemistry.
Silversmith, Ernest F. J. Chem. Educ. 1986, 63, 645.
Stereochemistry |
Diastereomers |
Separation Science
Separation and analysis of citral isomers: an undergraduate organic laboratory experiment  Sacks, Jeff; Greenley, Erin; Leo, Greg; Willey, Paul; Gallis, David; Mangravite, John A.
In this laboratory, the authors have introduced students to HPLC, mass spectrometric analysis, and the separation of thermally sensitive materials by vacuum distillation.
Sacks, Jeff; Greenley, Erin; Leo, Greg; Willey, Paul; Gallis, David; Mangravite, John A. J. Chem. Educ. 1983, 60, 434.
Mass Spectrometry |
HPLC |
Separation Science
A practical introduction to separation and purification techniques for the beginning organic chemistry laboratory  Leonard, Jack E.
Separation techniques have always been important for a successful chemical career. This author addresses some important considerations for training students.
Leonard, Jack E. J. Chem. Educ. 1981, 58, 1022.
Separation Science
Conversion of (+)-Limonene to (-)-Carvone: An organic laboratory sequence of local interest  Rothenberger, Otis S.; Krasnoff, Stuart B.; Rollins, Ronald B.
Orange oil is converted to one of the components of spearmint oil; the detectable odor difference is due to stereochemical factors.
Rothenberger, Otis S.; Krasnoff, Stuart B.; Rollins, Ronald B. J. Chem. Educ. 1980, 57, 741.
Stereochemistry |
Molecular Properties / Structure |
Synthesis |
Separation Science |
Industrial Chemistry |
Applications of Chemistry |
Enantiomers
Isolation of benzoic and boric acids from Listerine. An introductory organic chemistry experiment  Weichman, Roger L.
The experiment described here is a separation scheme which introduces the student to fractional distillation, extraction, decolorization with activated carbon, hot gravity filtration, vacuum, filtration, crystallization, recrystallization, melting point, mixed melting point, refractive index, gas chromatography, and infrared spectroscopy.
Weichman, Roger L. J. Chem. Educ. 1974, 51, 589.
Separation Science
Extraction of caffeine  Moye, Alfred L.
Much greater yields can be obtained by extracting caffeine from No-Doz tablets than coffee or tea.
Moye, Alfred L. J. Chem. Educ. 1972, 49, 194.
Separation Science |
Drugs / Pharmaceuticals
Instrumental techniques compared by analysis of a reaction mixture  Fairless, Billy J.; Dunn, Howard E.; Foster, Daniel O.
The purpose of this experiment is to acquaint the student with how a combination of instruments (glc, ir, and nmr) can be used to separate as well as to identify each compound in a reaction mixture.
Fairless, Billy J.; Dunn, Howard E.; Foster, Daniel O. J. Chem. Educ. 1971, 48, 827.
Instrumental Methods |
Gas Chromatography |
Qualitative Analysis |
Separation Science
Trimyristin from nutmeg  Frank, Forrest; Roberts, Theodore; Snell, Jane; Yates, Christy; Collins, Joseph
The author proposes the isolation and saponification of trimytistin from nutmeg as an excellent experiment to introduce general chemistry students to laboratory techniques or for use with the organic chemistry course in which case more techniques an be introduces.
Frank, Forrest; Roberts, Theodore; Snell, Jane; Yates, Christy; Collins, Joseph J. Chem. Educ. 1971, 48, 255.
Natural Products |
Food Science |
Separation Science
Purification of low-melting compounds  Kaye, Irving Allan
Presents a procedure that addresses difficulties to purification by recrystallization caused by the tendency of some low-melting compounds to precipitate from solution as oils.
Kaye, Irving Allan J. Chem. Educ. 1969, 46, 696.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Separation Science |
Crystals / Crystallography |
Solutions / Solvents |
Laboratory Management |
Precipitation / Solubility
Disc electrophoresis  Brewer, John M.; Ashworth, Raymond B.
Describes the procedures involved in separating proteins or nucleic acids through disc electrophoresis.
Brewer, John M.; Ashworth, Raymond B. J. Chem. Educ. 1969, 46, 41.
Electrochemistry |
Electrophoresis |
Proteins / Peptides |
Separation Science
Zone refining  Christian, John D.
A brief description of zone refining.
Christian, John D. J. Chem. Educ. 1956, 33, 32.
Phases / Phase Transitions / Diagrams |
Separation Science