Journal Articles: 27 results
Demonstration Extensions: Flame Tests and Electrolysis  Ed Vitz
Provides suggestions to supplement traditional demonstrations involving flame tests and water hydrolysis.
Vitz, Ed. J. Chem. Educ. 2008, 85, 522.
Alcohols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells  Michelle M. Ivey and Eugene T. Smith
Using a battery and a graphite electrode, an electrolytic cell is constructed to generate a layer of tarnish on silverware. Students then determine that the tarnish can be removed by electrochemically converting it back to silver using aluminum foil and baking soda.
Ivey, Michelle M.; Smith, Eugene T. J. Chem. Educ. 2008, 85, 68.
Consumer Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Aluminum Oxide, Al2O3  Jay A. Young
Properties, hazards, and storage requirements for aluminum oxide.
Young, Jay A. J. Chem. Educ. 2003, 80, 258.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
Ammonia Can Crush  Ed Vitz
When a 12-oz aluminum soft drink can filled with ammonia or hydrogen chloride gas is inverted and dipped into water, the rapidly dissolving gas evacuates the can and the can is crushed before water can be drawn into it. This demonstrates, among other things, the remarkable strength of hydrogen bonds.
Vitz, Ed. J. Chem. Educ. 1999, 76, 932.
Noncovalent Interactions |
Gases |
Solutions / Solvents |
Hydrogen Bonding
Microscale Thermite Reactions  Francisco J. Arnáiz, Rafael Aguado, and Susana Arnáiz
The reaction of aluminum with the oxides of a variety of elements illustrates exothermic reactions that require a high activation energy. It is also an appropriate experiment with regard to the discussion of Ellingham diagrams. When drama is not the main objective, conducting these reactions at microscale level offers numerous advantages over the usual scale.
Arnáiz, Francisco J.; Aguado, Rafael; Arnáiz, Susana. J. Chem. Educ. 1998, 75, 1630.
Microscale Lab |
Reactions |
Oxidation / Reduction
Acid-Base Chemistry of the Aluminum Ion in Aqueous Solution  Edward Koubek
A demonstration of the amphoteric behavior of aluminum is given based on an older report that was given many years ago.
Koubek, Edward. J. Chem. Educ. 1998, 75, 60.
Coordination Compounds |
Equilibrium |
Acids / Bases |
Aqueous Solution Chemistry
ACS National Historic Chemical Landmark: Charles Martin Hall's Discovery of the Electrochemical Process for Aluminum  Norman C. Craig
Oberlin College and the Cleveland Section of the American Chemical Society hosted a celebration in which Charles Martin Hall's discovery of the electrochemical process for extracting aluminum metal from the ore was designated as a National Historic Chemical Landmark by the ACS.
Craig, Norman C. J. Chem. Educ. 1997, 74, 1269.
The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells  Xavier LeRoux, Gerry A. Ottewill, and Frank C. Walsh
An experimental program designed to convey, to students aged 16 through undergraduate, the principles of battery electrochemistry through a comparative study of two different systems, the lead acid cell and aluminum air cell, is described.
LeRoux, Xavier; Ottewill, Gerry A.; Walsh, Frank C. J. Chem. Educ. 1996, 73, 811.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil  Peter Abeta Iyere
An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.
Iyere, Peter Abeta. J. Chem. Educ. 1996, 73, 455.
Kinetics |
A WARNING: Explosion Hazards of Reacting Magnesium and Aluminum with Powdered Silver Nitrate  Laing, Michael
Danger of reacting Mg and AgNO3, Al and AgNO3.
Laing, Michael J. Chem. Educ. 1994, 71, 270.
Metals |
Pyrotechnic Reactions Without Oxygen  Wright, Stephen W.
Reaction of K3FeF6 with Al and poly(tetrafluoroethylene) with Mg.
Wright, Stephen W. J. Chem. Educ. 1994, 71, 251.
Oxidation / Reduction |
An inexpensive, yet strong, way to assemble aluminum rod lattices  Brisbois, Ronald G.
An inexpensive yet strong way to assemble aluminum rod lattices to help with setting up reactions or apparatus.
Brisbois, Ronald G. J. Chem. Educ. 1993, 70, 506.
Laboratory Equipment / Apparatus
The aluminum can as electrochemical energy source  Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E.
A high-current electrochemical cell made from aluminum cans and scraps of copper wire that illustrates important electrochemical principles.
Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E. J. Chem. Educ. 1993, 70, 495.
Textbook error: Industrial production of alumina  Kennard, Colin H. L.
In the industrial world, the Al(OH)4- is reprecipitated by dropping the temperature and pressure, and the supersaturated solution seeded.
Kennard, Colin H. L. J. Chem. Educ. 1989, 66, 313.
Industrial Chemistry |
Precipitation / Solubility
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
A quick test for the highly colored ions of the aluminum-nickel group  Grenda, Stanley C.
This paper intends to present a technique that eliminates errors in the analysis of the nickel subgroup cations.
Grenda, Stanley C. J. Chem. Educ. 1986, 63, 720.
Qualitative Analysis |
Coordination Compounds
How to get the most from the dichromate volcano demonstration: Aluminothermy  Trogler, William C.
Reducing the green ash produced by the dichromate volcano (Cr2O3) with aluminum in a thermite-like display.
Trogler, William C. J. Chem. Educ. 1984, 61, 908.
Reactions |
Oxidation / Reduction
Dyeing of anodized aluminum  Grotz, Leonard C.
Anodization of Al is widely practiced in industry to improve the corrosion resistance of articles made of aluminum.
Grotz, Leonard C. J. Chem. Educ. 1983, 60, 763.
Industrial Chemistry |
Oxidation / Reduction |
Metals |
Dyes / Pigments |
Applications of Chemistry
Corrosion  Slabaugh, W. H.
The topic of corrosion extends several basic concepts of electrochemistry with which students can relate. This article outlines: standard electrochemical potentials; corrosion of iron' corrosion of aluminum; application of electrochemical concepts; and ideas for some experiments.
Slabaugh, W. H. J. Chem. Educ. 1974, 51, 218.
Oxidation / Reduction |
Consumer Chemistry |
Group III. Aluminum. The rare earths   Alyea, Hubert N.; Klug, Evangeline B.
Demonstrations include birthstones, the preparation of Al from Fe, amphoteric Al(OH)3, aluminon test for Al, crude vs pure ceric salts, ceric sulfate + Fe++, and ceric sulfate + hydrogen peroxide.
Alyea, Hubert N.; Klug, Evangeline B. J. Chem. Educ. 1968, 45, A59.
Quantitative Analysis
Studying the chemical properties of metallic aluminum  Feifer, Nathan
Studying the chemical properties of aluminum is made much easier by first producing an amalgam by treating aluminum with mercurous nitrate.
Feifer, Nathan J. Chem. Educ. 1968, 45, 648.
Metals |
Oxidation / Reduction
Analysis of an aluminum-zinc alloy: A general chemistry laboratory  Masterton, W. L.
In this experiment, students determine the percentage composition of an aluminum-zinc alloy by measuring the volume of hydrogen generated when reacted with excess acid.
Masterton, W. L. J. Chem. Educ. 1961, 38, 558.
A spot test analysis of the group III cations  Marion, Stephen P.; Zlochower, Isaac
This procedure may be used for the direct determination of the group III cations, for a quick confirmation of the results obtained in the regular scheme of analysis, or for teaching another technique in analytical chemistry.
Marion, Stephen P.; Zlochower, Isaac J. Chem. Educ. 1959, 36, 379.
Qualitative Analysis
Letters to the editor  De Ment, Jack
The author relates an explosion involving aluminum powder.
De Ment, Jack J. Chem. Educ. 1959, 36, 308.
Explosive hazard of aluminum-liquid oxygen mixtures  Austin, Calvin M.; Rohrer, Charles S.; Seifert, Ralph L.
Details the serious explosive hazards and ignition properties of aluminum-liquid oxygen mixtures; this demonstration should NEVER be used for classroom or public viewing purposes.
Austin, Calvin M.; Rohrer, Charles S.; Seifert, Ralph L. J. Chem. Educ. 1959, 36, 54.
Oxidation / Reduction
Textbook errors: XV. Miscellanea  Mysels, Karol J.
Textbooks errors considered include the solubility of acetates, the effect of light on reactions, tetrahedral carbon, the production of aluminum, and fumaric acid.
Mysels, Karol J. J. Chem. Educ. 1958, 35, 32.
Photochemistry |
Covalent Bonding
Effect of water on the interaction of aluminum and iodine  Azmatullah, Syed; Viswanathan, Argot
A drop of water added to powdered aluminum and iodine initiates a vigorous reaction.
Azmatullah, Syed; Viswanathan, Argot J. Chem. Educ. 1955, 32, 447.
Water / Water Chemistry |