TIGER

Journal Articles: 50 results
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells  Michelle M. Ivey and Eugene T. Smith
Using a battery and a graphite electrode, an electrolytic cell is constructed to generate a layer of tarnish on silverware. Students then determine that the tarnish can be removed by electrochemically converting it back to silver using aluminum foil and baking soda.
Ivey, Michelle M.; Smith, Eugene T. J. Chem. Educ. 2008, 85, 68.
Consumer Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The Use of Conjugate Charts in Transfer Reactions: A Unified Approach  Michael I. Allnutt
Redox reactions are discussed in terms of the relative strengths of the oxidant, the reductant, and their conjugates; a conjugate chart is a convenient and useful way of doing this. A similar chart for acids and bases that can be applied in the same manner is proposed.
Allnutt, Michael I. J. Chem. Educ. 2007, 84, 1659.
Acids / Bases |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Brønsted-Lowry Acids / Bases
Textbook Error: Short Circuiting an Electrochemical Cell  Judith M. Bonicamp and Roy W. Clark
Reports a serious error in the electrochemical diagrams in eight, 21st century texts and offers an analogy to electrical potential energy and a diagram to clarify the interrelationships between electromotive force E, reaction quotient Q, and Gibbs free energy G.
Bonicamp, Judith M.; Clark, Roy W. J. Chem. Educ. 2007, 84, 731.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
A Lemon Cell Battery for High-Power Applications  Kenneth R. Muske, Christopher W. Nigh, and Randy D. Weinstein
This article discusses the development of a lemon cell battery for high-power applications such as radios, portable cassette or CD players, and battery-powered toys.
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D. J. Chem. Educ. 2007, 84, 635.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Photogalvanic Cells for Classroom Investigations: A Contribution for Ongoing Curriculum Modernization  Claudia Bohrmann-Linde and Michael W. Tausch
Laboratory experiments examining the fundamental processes in the conversion of light into electrical energy using photogalvanic cells have been developed. These simple cells are suitable for classroom investigations examining the operating principles of photogalvanic cells and the influence of different parameters on their efficiency.
Bohrmann-Linde, Claudia; Tausch, Michael W. J. Chem. Educ. 2003, 80, 1471.
Electrochemistry |
Atomic Properties / Structure |
Photochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Why Do Some Batteries Last Longer Than Others?  Michael J. Smith and Colin A. Vincent
Comparing the energy content of the cathode material of different commercial batteries using a test cell.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2002, 79, 851.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
A Direct Methanol Fuel Cell  Orfeo Zerbinati
Materials and methods for construction of a direct methanol fuel cell.
Zerbinati, Orfeo. J. Chem. Educ. 2002, 79, 829.
Electrochemistry |
Laboratory Equipment / Apparatus |
Electrolytic / Galvanic Cells / Potentials
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
Structure and Content of Some Primary Batteries  Michael J. Smith and Colin A. Vincent
An experiment that complements electrochemical characterization and allows students to explore the structure of commercial cells and calculate the anode and cathode capacities from the stoichiometry of the cell reaction.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2001, 78, 519.
Consumer Chemistry |
Electrochemistry |
Undergraduate Research |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Slide Projector Corrosion Cell  Silvia Tejada, Estela Guevara, and Esperanza Olivares
The process of corrosion can be demonstrated in a slide projector, since the cell is in the shape of a slide, or on the stage of an overhead projector by setting up a simple galvanic cell. Corrosion occurs as the result of a galvanic cell reaction, in which the corroding metal acts as the anode. Several simple demonstrations relating to corrosion are described here.
Tejada, Silvia; Guevara, Estela; Olivares, Esperanza. J. Chem. Educ. 1998, 75, 747.
Electrochemistry |
Microscale Lab |
Oxidation / Reduction |
Reactions |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Lemon Cells Revisited - The Lemon-Powered Calculator  Daniel J. Swartling and Charlotte Morgan
Using lemons to create a voltaic cell to run items that students would use in their everyday lives drives home that chemistry plays an integral role in their lives.
Swartling, Daniel J.; Morgan, Charlotte. J. Chem. Educ. 1998, 75, 181.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
The "Golden Penny" Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration.  Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz
An explanation and simpler/safer design for the classical "gold penny" demonstration.
Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz J. Chem. Educ. 1995, 72, 386.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Use of Electrochemical Concentration Cells to Demonstrate the Dimeric Nature of Mercury(I) in Aqueous Media  Bhattacharya, Deepta; Peters, Dennis G.
Experimental procedure for demonstrating that divalent mercury is monovalent in aqueous solution; includes data and analysis.
Bhattacharya, Deepta; Peters, Dennis G. J. Chem. Educ. 1995, 72, 64.
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Using the Biological Cell in Teaching Electrochemistry  Merkel, Eva Gankiewicz
How electricity is produced in a simple cell is correlated with how commercial batteries work; this concept can then be related to how living cells send electrical impulses.
Merkel, Eva Gankiewicz J. Chem. Educ. 1994, 71, 240.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
The world's largest human salt bridge  Silverman, L. Phillip; Bunn, Barbara B.
On a beautiful April afternoon, the 1500 students had fun and learned something about electrochemistry, and they helped set a world's record for the "Longest Human Salt Bridge".
Silverman, L. Phillip; Bunn, Barbara B. J. Chem. Educ. 1992, 69, 309.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Why the Daniell cell works!  Martins, George F.
The strength of bonds between atoms in metals, the relative ease of removing electrons from atoms, and the energy lowering of the attraction of water molecules for positive ions in solution all aid beginning student's understanding of why reactions occur.
Martins, George F. J. Chem. Educ. 1990, 67, 482.
Atomic Properties / Structure |
Metals |
Electrolytic / Galvanic Cells / Potentials
Construction and evaluation of an inexpensive reference electrode with internal electrolyte in agar matrix  Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A.
In this paper the authors show how to construct a reference electrode of Ag/AgCl with an internal electrolyte in agar matrix.
Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A. J. Chem. Educ. 1990, 67, 179.
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry |
Laboratory Equipment / Apparatus
Alleviating the common confusion caused by polarity in electrochemistry  Moran, P. J.; Gileadi, E.
The issue of polarity encountered in electrochemistry and relevant to a variety of electrochemical concepts often confuses students and is an unnecessary deterrent to the study of electrochemistry.
Moran, P. J.; Gileadi, E. J. Chem. Educ. 1989, 66, 912.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Using a projecting voltmeter to introduce voltaic cells  Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony
Using a transparent "projecting" voltmeter and assembling a zinc versus copper cell one component at a time allows students to develop a more concrete notion of the nature of a voltaic cell and the potential it produces.
Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony J. Chem. Educ. 1989, 66, 510.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Transformation of old two-electrode polarographs into three-electrode systems  Papadopoulos, N.; Linardis, P.
In this work a simple circuit is proposed that can transform a two-electrode polarograph into a three-electrode system.
Papadopoulos, N.; Linardis, P. J. Chem. Educ. 1989, 66, 419.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus
Electrochemical cells using sodium silicate   Rapp, Bernard, FSC
A procedure of assembly and execution of a demonstration of an electrochemical cell using sodium silicate.
Rapp, Bernard, FSC J. Chem. Educ. 1988, 65, 358.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrical energy from cells - A corridor demonstration  Gilbert, George L.
A display that demonstrates the charge and discharge of a solar cell, fuel cell, and storage cell.
Gilbert, George L. J. Chem. Educ. 1980, 57, 216.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Electrochemical demonstration: Motor driven by a simple galvanic cell  Skinner, J. F.
A Zn / Zn 2+ Cu 2+ / Cu (Daniel) cell operates a small motor.
Skinner, J. F. J. Chem. Educ. 1977, 54, 619.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Racing car batteries  Plumb, Robert C.; Combs, R. E.; Connelly, J. M.
Illustrating the Nernst equation and Faraday's laws using the example of the silver-zinc batteries used in racing cars.
Plumb, Robert C.; Combs, R. E.; Connelly, J. M. J. Chem. Educ. 1973, 50, 857.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Free energies of formation measurements on solid-state electrochemical cells  Rollino, J. A.; Aronson, S.
This experiment demonstrates in a direct fashion the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell.
Rollino, J. A.; Aronson, S. J. Chem. Educ. 1972, 49, 825.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Solid State Chemistry |
Organometallics
Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells  Kozawa, Akiya; Powers, R. A.
The purpose of this article is to make a simplified, but current presentation of the electrochemical reactions in batteries, particularly those of the manganese dioxide cathode of dry cells.
Kozawa, Akiya; Powers, R. A. J. Chem. Educ. 1972, 49, 587.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
The presentation of electrode potentials using an energy level diagram  Pinfold, T. A.
The tabular form in which standard electrode potentials are usually presented often leads to confusion that can be diminished by representing the electrochemical series on an energy diagram like that provided.
Pinfold, T. A. J. Chem. Educ. 1972, 49, 506.
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P.
(1) Why different potential for copper/zinc cells when using nitrates vs. sulfates? Why is neither cell potential as large as predicted by Nerst equation? (2) Do elements in the zinc subgroup belong to the transition series? - answer by Quagliano. (3) How can the 2,4,5-trichloro derivative of phenoxyacetic acid be prepared? - answer by Danehy.
Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P. J. Chem. Educ. 1969, 46, 227.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Periodicity / Periodic Table |
Metals |
Synthesis |
Aromatic Compounds
The cell potential and the distance between electrodes  Lauren, Paul M.
This demonstration illustrates the importance of the role played by ion diffusion in determining the magnitude of the emf of a primary cell.
Lauren, Paul M. J. Chem. Educ. 1968, 45, A691.
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Verification of the form of the Nernst equation: An experiment for introductory chemistry  Evans, James S.
In this experiment, students record data for the concentration dependence of the ferrous-ferric half-cell potential at a platinum electrode, using a silver-silver ion reference electrode, a salt bridge, and a voltmeter.
Evans, James S. J. Chem. Educ. 1968, 45, 532.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrode potentials  Shombert, Donald
Changes in the potential observed for two Daniell cells are due to changes in ion concentrations.
Shombert, Donald J. Chem. Educ. 1965, 42, A215.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Equilibrium
Common sources of confusion; Electrode sign conventions  Anson, Fred C.
Examines common sources of confusion with respect to electrode signs and recommends new conventions.
Anson, Fred C. J. Chem. Educ. 1959, 36, 394.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Letters  Hackney, J. C.
The author elaborates on the source of a fallacy in the calculation of an overall redox potential by combination of two half-cell potentials.
Hackney, J. C. J. Chem. Educ. 1952, 29, 472.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Oxidation / Reduction
Combining half-reactions and their standard electrode potentials  Miller, Sidney I.
To increase the value of standard electrode potential tables, a new method of combination of half-cell reactions is proposed.
Miller, Sidney I. J. Chem. Educ. 1952, 29, 140.
Electrochemistry |
Aqueous Solution Chemistry |
Electrolytic / Galvanic Cells / Potentials