TIGER

Journal Articles: 82 results
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (Ksp) of Potassium Hydrogen Phthalate  Frazier W. Nyasulu, William Cusworth III, David Lindquist, and John Mackin
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate. From these data the solubility products, the Gibbs free energies of solution, the standard enthalpy of solution, and the standard entropy of solution are calculated.
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John. J. Chem. Educ. 2007, 84, 456.
Acids / Bases |
Atomic Properties / Structure |
Spectroscopy |
Equilibrium |
Quantitative Analysis |
Thermodynamics |
Titration / Volumetric Analysis |
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Spectroscopy
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Warren Hirsch
Analysis of the thermodynamics of a stretched rubber band.
Hirsch, Warren. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Equilibrium
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Thermodynamics and Spontaneity (the author replies)  Ochs, Raymond S.
The term "spontaneous" is historical baggage.
Ochs, Raymond S. J. Chem. Educ. 1998, 75, 659.
Thermodynamics
Thermodynamics and Spontaneity  Earl, Boyd L.
The term "spontaneous" is worth keeping in the chemistry lexicon.
Earl, Boyd L. J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Letters to the Editor  
The term "spontaneous" is worth keeping in the chemistry lexicon.
J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
In Defense of Thermodynamics - An Animate Analogy  Sture Nordholm
In order to illustrate the deepest roots of thermodynamics and its great power and generality, it is applied by way of analogy to human behavior from an economic point of view.
Nordholm, Sture. J. Chem. Educ. 1997, 74, 273.
Thermodynamics
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamics
Rubber Elasticity: A Simple Method for Measurement of Thermodynamic Properties  Byrne, John P.
A modified triple-beam balance that uses an optical lever to detect small changes in the length of a stretched rubber band.
Byrne, John P. J. Chem. Educ. 1994, 71, 531.
Thermodynamics |
Laboratory Equipment / Apparatus |
Physical Properties
Intensive and extensive: Underused concepts  Canagaratna, Sebastian G.
Methods for teaching intensive and extensive properties.
Canagaratna, Sebastian G. J. Chem. Educ. 1992, 69, 957.
Physical Properties |
Thermodynamics
The thermodynamics of home-made ice cream.  Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen.
Using the production of ice cream to teach heat capacity, viscosity, and freezing-point reduction.
Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen. J. Chem. Educ. 1992, 69, 658.
Thermodynamics |
Water / Water Chemistry |
Applications of Chemistry
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
Calculating entropy changes at different extents of reaction  Brosnan, Tim
The Revised Nuffield Chemistry course uses a simple statistical approach to entropy a a unifying idea in its treatment of thermodynamics. It was for these students that the author developed this method of calculating entropy changes at different extents of reaction which are listed here.
Brosnan, Tim J. Chem. Educ. 1990, 67, 48.
Thermodynamics
Thermodynamics should be built on energy-not on heat and work  Barrow, Gordon M.
This author looks closely at the concepts of heat, work, energy, and the laws of thermodynamics to back up his title argument.
Barrow, Gordon M. J. Chem. Educ. 1988, 65, 122.
Thermodynamics
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Thermodynamics
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Thermodynamics
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Error in the minimum free energy curve  Willis, Grover; Ball, David
Correction to the minimum free energy curve shown in some general chemistry texts.
Willis, Grover; Ball, David J. Chem. Educ. 1984, 61, 173.
Thermodynamics
Solar energy experiment for beginning chemistry  Davis, Clyde E.
This article introduces an experiment that incorporates chemical applications of solar energy into the curriculum.
Davis, Clyde E. J. Chem. Educ. 1983, 60, 158.
Thermodynamics |
Applications of Chemistry
Paradigms and paradoxes  Campbell, J. A.
Examines the commonly held tenets "systems tend to a minimum potential energy," "the entropy of a shuffled deck of cards is greater than that of a new deck," and "energy is the ability to do work."
Campbell, J. A. J. Chem. Educ. 1980, 57, 41.
Thermodynamics
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Free energy surfaces and transition state theory  Cruickshank, F. R.; Hyde, A. J.; Pugh, D.
130/131. Unless free energy diagrams are very precisely labeled and explained they are seriously misleading and often incorporate a major error of principle. [Note: This should be #130 in the series, as shown in the table of contents. But p. 288 shows #131. The error was not caught, so the next one in the series is #132. The present article is both #130 and #131.]
Cruickshank, F. R.; Hyde, A. J.; Pugh, D. J. Chem. Educ. 1977, 54, 288.
Thermodynamics
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
An alternative to free energy for undergraduate instruction  Strong, Laurence E.; Halliwell, H. Frank
It is the purpose of this paper to question the usefulness of the Gibbs function for the student and to propose an alternative based on the use of entropy functions that help the student to focus more sharply on the features of a system that relate to its capacity to change.
Strong, Laurence E.; Halliwell, H. Frank J. Chem. Educ. 1970, 47, 347.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Energy and Entropy in Chemistry (Wyatt, P. A. H.)  Strong, Laurence E.

Strong, Laurence E. J. Chem. Educ. 1968, 45, 71.
Thermodynamics
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
A simple analogy of the relationship of ?G to the position of equilibrium  Marks, D. J.
This short note describes a simple demonstration to serve as an analogy of the relationship of ?G to the position of equilibrium.
Marks, D. J. J. Chem. Educ. 1967, 44, 402.
Thermodynamics |
Equilibrium
The fundamental assumptions of chemical thermodynamics  MacRae, Duncan
Examines the fundamental terms, definitions, and assumptions of chemical thermodynamics.
MacRae, Duncan J. Chem. Educ. 1966, 43, 586.
Thermodynamics
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Concerning equilibrium, free energy changes, Le Châtelier's principle II  Eberhardt, William H.
This demonstration involves a reversible, temperature-based transformation from blue tetrahedrally coordinated Co2+ to pink sixfold coordinated Co2+.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Equilibrium |
Thermodynamics |
Aqueous Solution Chemistry |
Coordination Compounds
Reversible and irreversible work: A lecture demonstration  Eberhardt, William H.
This lecture demonstration illustrates the concepts of reversible and irreversible work using a pendulum and attached pan balance.
Eberhardt, William H. J. Chem. Educ. 1964, 41, 483.
Thermodynamics
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Work of compressing an ideal gas  Bauman, Robert P.
In formulating examples of compression problems there should be an explicit statement that the process is reversible, or at least slow.
Bauman, Robert P. J. Chem. Educ. 1964, 41, 102.
Thermodynamics |
Gases
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics