TIGER

Journal Articles: 44 results
Magnetized Water: Science or Fraud?  L. Lahuerta Zamora, G. M. Antón-Fos, P. A. Alemán López, and R. V. Martin Algarra
Commercial water magnetizers provide a unique opportunity to help university and secondary students develop appropriate skepticism against extraordinary claims and use testing as the basis for their scientific evaluation.
Lahuerta Zamora, L.; Antón-Fos, G. M.; Alemán López, P. A.; Martin Algarra, R. V. J. Chem. Educ. 2008, 85, 1416.
Aqueous Solution Chemistry |
Magnetic Properties |
pH |
Titration / Volumetric Analysis |
Water / Water Chemistry
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
Paramagnetism Paradoxes: Projectable Demonstrations  Frederick C. Sauls and Ed Vitz
A rare earth magnet demonstrates paramagnetism in heterogeneous solutions, bubbles of various gases in water and other solutions, and various crystalline substances. These behaviors, often unexpected and paradoxical, are used to motivate student examination of paramagnetism.
Sauls, Frederick C.; Vitz, Ed. J. Chem. Educ. 2008, 85, 529.
Magnetic Properties
Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet  Bruce Mattson
When a neodymium magnet is brought near a suspended glass tube containing a small amount of liquid oxygen, the tube is attracted to the magnet, demonstrating oxygen's paramagnetism. In larger quantities the blue color of liquid oxygen is readily observable.
Mattson, Bruce. J. Chem. Educ. 2007, 84, 1296.
Descriptive Chemistry |
Gases |
Magnetic Properties |
MO Theory |
Molecular Properties / Structure
Authors: Know the Hazards, Please!  Anne K. Bentley, Mohammed Farhoud, Arthur B. Ellis, George C. Lisensky, Anne-Marie L. Nickel, and Wendy C. Crone
The MSDS for commercial Ni plating solution states that the product is regulated as toxic and contains ingredients that are known to cause cancer.
Bentley, Anne K.; Farhoud, Mohammed; Ellis, Arthur B.; Lisensky, George C.; Nickel, Anne-Marie L.; Crone, Wendy C. J. Chem. Educ. 2005, 82, 1775.
Solutions / Solvents |
Toxicology |
Nanotechnology |
Magnetic Properties
Authors: Know the Hazards, Please!  Jay A. Young
The article Template Synthesis and Magnetic Manipulation of Nickel Nanowires does not identify all of the important potential hazards involved; nickel compounds are known to be human carcinogens, and nickel and its compounds are mutagenic.
Young, Jay A. J. Chem. Educ. 2005, 82, 1775.
Solutions / Solvents |
Toxicology |
Nanotechnology |
Magnetic Properties
Authors: Know the Hazards, Please!  Jay A. Young
The article Template Synthesis and Magnetic Manipulation of Nickel Nanowires does not identify all of the important potential hazards involved; nickel compounds are known to be human carcinogens, and nickel and its compounds are mutagenic.
Young, Jay A. J. Chem. Educ. 2005, 82, 1775.
Solutions / Solvents |
Toxicology |
Nanotechnology |
Magnetic Properties
Measurement of the Isotopic Ratio of 10B/11B in NaBH4 by 1H NMR  Murray Zanger and Guillermo Moyna
A simple and remarkably accurate method for estimating the isotopic ratio between 10B and 11B through the use of 1H nuclear magnetic resonance (NMR) spectroscopy is presented. The experiment relies on the splitting caused by 10B (I = 3) and 11B (I = 3/2) on the 1H signal of a proton directly bound to boron, a phenomenon readily observed on an aqueous sample of NaBH4. In combination with a brief lecture or prelaboratory presentation, this laboratory can serve to introduce students to magnetic properties as well as theoretical and experimental aspects of NMR spectroscopy as early as the freshman-level chemistry.
Zanger, Murray; Moyna, Guillermo. J. Chem. Educ. 2005, 82, 1390.
Instrumental Methods |
Magnetic Properties |
NMR Spectroscopy |
Atomic Properties / Structure |
Isotopes
Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet  Charles J. Malerich and Patrica K. Ruff
A method for demonstrating and measuring the magnetic attraction between a paramagnetic substance and a neodymium magnet is described and evaluated. The experiment measures the maximum angle that the magnet can deflect a paramagnetic compound from the vertical. The apparatus to make this measurement is easy to set up and is low-cost.
Malerich, Charles J.; Ruff, Patrica K. J. Chem. Educ. 2004, 81, 1155.
Magnetic Properties |
Metals |
Transition Elements |
Computational Chemistry
Magnetic Particle Technology. A Simple Preparation of Magnetic Composites for the Adsorption of Water Contaminants  Luiz C. A. Oliveira, Rachel V. R. A. Rios, José D. Fabris, Rochel M. Lago, and Karim Sapag
In this article a simple undergraduate laboratory experiment to produce magnetic adsorbents is described. These magnetic materials efficiently adsorb contaminants from water and can be easily removed from the medium by a simple magnetic separation process.
Oliveira, Luiz C.A.; Rios, Rachel V.R.A.; Fabris, José D.; Lago, Rochel M.; Sapag, Karim. J. Chem. Educ. 2004, 81, 248.
Green Chemistry |
Magnetic Properties |
Materials Science |
Separation Science |
Water / Water Chemistry
Simple Measurement of Magnetic Susceptibility with a Small Permanent Magnet and a Top-Loading Electronic Balance  Yoshinori Itami and Kozo Sone
Measuring magnetic susceptibility of solid transition metal salts using a simple, inexpensive, and easy-to-handle device.
Itami, Yoshinori; Sone, Kozo. J. Chem. Educ. 2002, 79, 1002.
Atomic Properties / Structure |
Magnetic Properties |
Transition Elements |
Laboratory Equipment / Apparatus |
Metals
Magnetic Stirring with the Stirring Bar Length Exceeding the Vessel Diameter  Kirk W. Payne, James M. Lucas, and Edmund J. Eisenbraun
Suggestions for effectively using magnetic stirring bars in test tubes.
Payne, Kirk W.; Lucas, James M.; Eisenbraun, Edmund J. J. Chem. Educ. 2002, 79, 217.
Laboratory Equipment / Apparatus |
Magnetic Properties |
Solutions / Solvents
Propagation of Errors in Freshman Chemistry Textbooks: A Case Study Using the Magnetic Moment of a Spinning Electron  John B. Vincent
An examination of textbooks published during the last four decades reveals that reversal of the direction of the magnetic field of spinning electrons accompanied the introduction of figures into freshman chemistry textbooks about 20 years ago.
Vincent, John B. J. Chem. Educ. 1999, 76, 1460.
Magnetic Properties
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Demonstrations on Paramagnetism with an Electronic Balance  Adolf Cortel
The demonstration shows the paramagnetism of common inorganic compounds by measuring the force with which they are attracted by a magnet over the plate of an electronic balance.
Cortel, Adolf. J. Chem. Educ. 1998, 75, 61.
Magnetic Properties |
Atomic Properties / Structure |
Covalent Bonding
Elements of Curriculum Reform: Putting Solids in the Foundation  Arthur B. Ellis
Until recently, solids were a relatively small part of the chemistry curriculum. Helping to close this particular gap between the research and educational enterprises was the objective of the Ad Hoc Committee for Solid-State Instructional Materials, formed in 1990.
Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1033.
Materials Science |
Solid State Chemistry |
Nanotechnology |
Magnetic Properties
A Refrigerator Magnet Analog of Scanning-Probe Microscopy  Julie K. Lorenz, Joel A. Olson, Dean J. Campbell, George C. Lisensky, and Arthur B. Ellis
The magnetic interactions between a flexible-sheet refrigerator magnet and a probe tip cut from the same magnet is used as a macroscopic analog of scanning probe microscopies.
Lorenz, Julie K.; Olson, Joel A.; Campbell, Dean J.; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1032A.
Surface Science |
Materials Science |
Atomic Properties / Structure |
Nanotechnology |
Magnetic Properties
Observation of Magnetic Repulsion Acting on Nitrogen Bubble on Water Surface - A Simple Experiment of Studying Diamagnetic Property of Nitrogen  Yukinori Matsuyama, Takashi Yasuoka, Syunmei Mitsuzawa, Tunetaka Sasaki
Observation of the paramagnetic property by a simple experiment showing the attraction of an oxygen bubble on the water surface to a magnet has been reported. In this article, we report the opposite behavior magnetic repulsion observed for a nitrogen bubble by the same method. [Third author's first name misspelled in hard copy and PDF.]
Matsuyama, Yukinori; Yasuoka, Takashi; Mitsuzawa, Syunmei; Sasaki, Tunetaka. J. Chem. Educ. 1997, 74, 943.
Learning Theories |
Magnetic Properties |
Atomic Properties / Structure
Microwave Microscale Organic Experiments  John W. Elder and Kathleen M. Holtz
This article describes an inexpensive apparatus to perform sonochemical reactions, in small scale, using common lab glassware.
Elder, John W.; Holtz, Kathleen M. J. Chem. Educ. 1996, 73, A104.
Microscale Lab |
Magnetic Properties |
Laboratory Equipment / Apparatus |
Synthesis
Rare Earth Iron Garnets: Their Synthesis and Magnetic Properties  Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J.
A general synthesis for compositions in the solid solution series YxGd3-xFe5O12 (x = 0, 1, 2, 3) and a simple demonstration that illustrates the differing magnetic properties of these materials.
Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J. J. Chem. Educ. 1994, 71, 696.
Metals |
Transition Elements |
Magnetic Properties |
Synthesis |
Solid State Chemistry
A homemade stirring bar for magnetic stirrers  Li, Xiaorong; Chang, James C.
Inexpensive stirring bars can be made by sealing iron wire into pieces of glass tubing.
Li, Xiaorong; Chang, James C. J. Chem. Educ. 1990, 67, 346.
Laboratory Equipment / Apparatus |
Magnetic Properties
Observation of paramagnetic property of oxygen by simple method - A simple experiment for college chemistry and physics courses   Shimada, Hiroshi; Yasuoka, Takashi; Mitsuzawa, Shunmei
The authors devised a demonstration in which a bubble of gaseous oxygen is used to demonstrate the paramagnetic property of oxygen rather than liquid oxygen.
Shimada, Hiroshi; Yasuoka, Takashi; Mitsuzawa, Shunmei J. Chem. Educ. 1990, 67, 63.
MO Theory |
Magnetic Properties
Ferrimagnetism   Knox, Kerro
It is possible in a simple lecture demonstration to synthesize Fe3O4 right before student's eyes and to show its interaction with a magnetic field, comparing it to a paramagnetic material.
Knox, Kerro J. Chem. Educ. 1989, 66, 337.
Magnetic Properties |
Synthesis
Physical and chemical properties  Boschmann, Erwin
A series of overhead demonstrations regarding physical and chemical properties.
Boschmann, Erwin J. Chem. Educ. 1987, 64, 891.
Physical Properties |
Liquids |
Precipitation / Solubility |
Magnetic Properties |
Kinetic-Molecular Theory |
Crystals / Crystallography |
Gases
A simple demonstration of high Tc superconductive powder  Baker, Roger; Thompson, James C.
Demonstrating the Meissner effect using superconducting powder.
Baker, Roger; Thompson, James C. J. Chem. Educ. 1987, 64, 853.
Superconductivity |
Magnetic Properties
Levitating a magnet using a superconductive material  Juergens, Frederick H.; Ellis, Arthur B.; Dieckmann, Gunther H.; Perkins, Ronald I.
Demonstrating the Meissner effect with an overhead projector.
Juergens, Frederick H.; Ellis, Arthur B.; Dieckmann, Gunther H.; Perkins, Ronald I. J. Chem. Educ. 1987, 64, 851.
Superconductivity |
Magnetic Properties
A tale of two elements  Nelson, P. G.
Readers are invited to identify elements A and B from the descriptions in this article.
Nelson, P. G. J. Chem. Educ. 1986, 63, 1021.
Oxidation State |
Organometallics |
Coordination Compounds |
Descriptive Chemistry |
Magnetic Properties
A demonstration of the basic principle of NMR  Meloan, Clifton, E.
Uses a toy gyroscope, wire, and two waste baskets.
Meloan, Clifton, E. J. Chem. Educ. 1982, 59, 154.
NMR Spectroscopy |
Magnetic Properties
Regulating the speed of a magnetic stirrer  Deckey, George
Diminishing the primary magnetic field of the stirring magnet with an aluminum plate.
Deckey, George J. Chem. Educ. 1982, 59, 73.
Laboratory Equipment / Apparatus |
Magnetic Properties
Magnetic and spectral behavior of Co(py)2X2 complexes. A teaching experiment  Webb, D. L.; Meek, T. L.
The pedagogical merit of this experiment is two-fold: a considerable portion of the syllabus is covered and there is a requirement for students to collaborate and discuss.
Webb, D. L.; Meek, T. L. J. Chem. Educ. 1978, 55, 408.
Spectroscopy |
Magnetic Properties |
Coordination Compounds |
Organometallics
Paramagnetic properties of Fe(II) and Fe(III)  Walker, Noojin
This series of tests is designed to correct the misconception that compounds do not have magnetic properties.
Walker, Noojin J. Chem. Educ. 1977, 54, 431.
Magnetic Properties |
Oxidation State
Magnetic stirring bars made easy  Himmel, Albert A.
Making magnetic stir bars from the magnetic strips found in refrigerator doors.
Himmel, Albert A. J. Chem. Educ. 1975, 52, 264.
Laboratory Computing / Interfacing |
Magnetic Properties
The paramagnetism of O2  Lethbridge, J. W.; Davies, M. B.
A simple but more spectacular demonstration of the paramagnetism of O2.
Lethbridge, J. W.; Davies, M. B. J. Chem. Educ. 1973, 50, 656.
Magnetic Properties |
Molecular Properties / Structure
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
A simple, effective demonstration of magnetic properties of materials  Burke, John A., Jr.
A simple demonstration of diamagnetism that requires only a magnet of a few kilogauss in strength.
Burke, John A., Jr. J. Chem. Educ. 1972, 49, 568.
Magnetic Properties |
Physical Properties |
Metals |
Transition Elements
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
Demonstration of the two spin-states of paramagnetic species in a magnetic field  Dorko, Ernest A.; Brenholdt, James P.
This demonstration relies on a "Chinese whistling top" that flips while spinning as an analogy for electrons of paramagnetic species in a magnetic field
Dorko, Ernest A.; Brenholdt, James P. J. Chem. Educ. 1970, 47, A389.
Magnetic Properties
A simple method for recording with a conventional analytical balance  Charles, R. G.
Presents a simple and inexpensive device, based an a small Hall-effect transducer, for recording with an analytical balance.
Charles, R. G. J. Chem. Educ. 1969, 46, 787.
Magnetic Properties |
Laboratory Equipment / Apparatus
3-D demonstration of concept of a field  Weaver, Elbert C.
Uses a magnet an iron filings to produce a 3D demonstration of a field.
Weaver, Elbert C. J. Chem. Educ. 1967, 44, A727.
Magnetic Properties
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
Notes on experiments for introductory college chemistry  
A brief set of notes regarding the complex salt [Co(NH3)5Cl]Cl2, the Guoy balance, Avogadro's number, and the stoichiometry of a mixture.
J. Chem. Educ. 1965, 42, 495.
Coordination Compounds |
Magnetic Properties |
Stoichiometry |
Solutions / Solvents
Density measurements with a magnetically controlled float  Cartan, F.
Presents suggestions for investigations to accompany and earlier published article.
Cartan, F. J. Chem. Educ. 1963, 40, A538.
Physical Properties |
Magnetic Properties
The use of colloidal graphite for laboratory demonstrations  Smith, Edward A.
Examines the shape of graphite particles, the electrical properties of colloids, the coagulation of colloids, graphite and magnetic orientation, and the electrical conductivity of graphite.
Smith, Edward A. J. Chem. Educ. 1956, 33, 600.
Colloids |
Conductivity |
Magnetic Properties
A precaution in the use of magnetic stirrers  Passer, Moses
A recommendation to use only uncoated magnetic stirring bars for high-temperature work in inert solvents is based on a laboratory accident.
Passer, Moses J. Chem. Educ. 1955, 32, 332.
Laboratory Equipment / Apparatus |
Magnetic Properties |
Laboratory Management