TIGER

Journal Articles: 10 results
Teaching Chemistry Laboratory Skills in Industrial Contexts  Julianne M. Braun and Carol White
A recently completed project has produced a compilation of 40 laboratory experiments presented within the contexts of five major industries. This article provides a summary of these experiments, along with a discussion of ancillary materials.
Braun, Julianne M.; White, Carol. J. Chem. Educ. 2006, 83, 353.
Applications of Chemistry |
Industrial Chemistry |
Metals |
Polymerization |
Water / Water Chemistry
A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory  George D. Bennett
Based on a technology that won a Presidential Green Chemistry Challenge Award, this experiment involves the thermal polymerization of aspartic acid and subsequent hydrolysis to give sodium poly(aspartate). The procedure is suitable for introducing students to the important topic of polymers and for illustrating several of the principles of green chemistry.
Bennett, George D. J. Chem. Educ. 2005, 82, 1380.
Green Chemistry |
Synthesis |
Industrial Chemistry |
Natural Products |
Polymerization |
Proteins / Peptides
Polymers (Oxford Chemistry Primers No. 85) (David Walton and J. Phillip Lorimer)  John H. Shibata
Although the title suggests a broad, general coverage of polymers, in reality this book focuses primarily on synthesis and the macroscopic properties of polymers. A significant portion of the book emphasizes practical considerations of polymerscommercial aspects determined by the properties of polymers and the industrial processes for polymer synthesis and three-dimensional network formation. In many cases, specific polymer types and materials are described in detail. The concreteness of explicit examples to illustrate the principles of polymerization and the properties of networks and functional polymers are appropriate for readers seeking a practical introduction to polymers.
Shibata, John H. J. Chem. Educ. 2005, 82, 533.
Polymerization |
Synthesis
Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate  Craig J. Donahue, Jennifer A. Exline, and Cynthia Warner
Procedure in which students depolymerize a common plastic (PET from 2-L pop bottles) under mild conditions using nontoxic chemicals to produce monomer building blocks.
Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia. J. Chem. Educ. 2003, 80, 79.
Industrial Chemistry |
Synthesis |
Aromatic Compounds |
Polymerization
An Introduction to the Scientific Process: Preparation of Poly(vinyl acetate) Glue  Robert G. Gilbert, Christopher M. Fellows, James McDonald, and Stuart W. Prescott
Exercise to give students experience in scientific processes while introducing them to synthetic polymer colloids.
Gilbert, Robert G.; Fellows, Christopher M.; McDonald, James; Prescott, Stuart W. J. Chem. Educ. 2001, 78, 1370.
Industrial Chemistry |
Noncovalent Interactions |
Surface Science |
Polymerization |
Applications of Chemistry |
Colloids
Thermosetting Resins   W. Peng and B. Riedl
A general description of the different chemical systems used as thermosetting resins, their applications, and some physicochemical aspects of their polymerization.
Peng, W.; Riedl, B. J. Chem. Educ. 1995, 72, 587.
Polymerization |
Industrial Chemistry |
Applications of Chemistry
The SHOP process: An example of industrial creativity  Reuben, Bryan; Wittcoff, Harold
The Shell Higher Olefins Process is probably the most remarkable industrial chemical process to have been developed in the past decade; this article highlights the process.
Reuben, Bryan; Wittcoff, Harold J. Chem. Educ. 1988, 65, 605.
Industrial Chemistry |
Surface Science |
Alcohols |
Polymerization |
Applications of Chemistry |
Fatty Acids
Polymer preparations in the laboratory  Lampman, Gary M.; Ford, Doug W.; Hale, Wayne R.; Pinkers, Arthur; Sewell, Christopher G.
Some convenient procedures for preparing polymers that have been used in a course for industrial arts students.
Lampman, Gary M.; Ford, Doug W.; Hale, Wayne R.; Pinkers, Arthur; Sewell, Christopher G. J. Chem. Educ. 1979, 56, 626.
Polymerization |
Nonmajor Courses |
Industrial Chemistry
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Polymerization
Ethylene: The organic chemical industry's most important building block  Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E.
The sources, chemistry, and industrial uses of ethylene.
Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E. J. Chem. Educ. 1979, 56, 385.
Alkenes |
Industrial Chemistry |
Applications of Chemistry |
Polymerization