TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
4 Videos
16 Assessment Questions
89 Molecular Structures
19 Journal Articles
10 Other Resources
Videos: First 3 results
Diels-Alder Visualization  
Several computer animations of a Diels-Alder reaction that were created as an undergraduate student project are presented.
Addition Reactions |
Alkenes
Addition Reactions of Alkenes  
The Diels-Alder reaction, addition of oxygen to tetrakis(N, N-dimethylamino) ethylene, polymerization of ethylene, and addition of iodine to a-pinene are demonstrated. Molecular models of ethene are shown.
Addition Reactions |
Alkenes
Reactions of Iodine with alpha-Pinene  
Reactions of Iodine with alpha-Pinene
Addition Reactions |
Alkenes |
Applications of Chemistry
View all 4 results
Assessment Questions: First 3 results
Molecular_Structure : Hybridization (10 Variations)
Which of the following molecules/ions have sp hybridization around the indicated atom?
Covalent Bonding |
MO Theory
Conjugation (1 Variations)
A collection of 1 assessment questions about Conjugation
MO Theory |
Aromatic Compounds
MO Theory (11 Variations)
A collection of 11 assessment questions about MO Theory
MO Theory |
Reactions |
Addition Reactions |
Free Radicals |
Alkenes |
UV-Vis Spectroscopy
View all 16 results
Molecular Structures: First 3 results
Peroxide Ion O22-

3D Structure

Link to PubChem

Ionic Bonding |
MO Theory

Triiodide Ion I3-

3D Structure

Link to PubChem

VSEPR Theory |
MO Theory |
Nonmetals

Phosphorus Pentachloride PCl5

3D Structure

Link to PubChem

VSEPR Theory |
Nonmetals |
MO Theory

View all 89 results
Journal Articles: First 3 results.
Pedagogies:
The Synthesis of N-Benzyl-2-azanorbornene via Aqueous Hetero Diels–Alder Reaction  Xavier Sauvage and Lionel Delaude
Characterization of the product of this organic synthesis through IR and NMR data analysis provides valuable material to familiarize students with different types of protonproton coupling patterns and their typical ranges, serves to illustrate the concepts of green chemistry and atom efficiency, and can be used to exemplify structural analysis and computational studies.
Sauvage, Xavier; Delaude, Lionel. J. Chem. Educ. 2008, 85, 1538.
Alkenes |
Aqueous Solution Chemistry |
Conformational Analysis |
Green Chemistry |
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Photochemical Dimerization of Dibenzylideneacetone. A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  G. Nageswara Rao, Chelli Janardhana, V. Ramanathan, T. Rajesh, and P. Harish Kumar
Presents a laboratory procedure for the photochemical dimerization of dibenzylideneacetone, a dienone. The dimerization is confirmed by chemical ionization mass spectrometry, and other spectroscopic techniques are used to establish the structure of the product.
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish. J. Chem. Educ. 2006, 83, 1667.
Aldehydes / Ketones |
Alkenes |
Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Photochemistry |
Thin Layer Chromatography
Diels–Alder Synthesis of endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide  Marsha R. Baar and Kristin Wustholz
endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide was synthesized by a DielsAlder cycloaddition of 1,3-cyclohexadiene and N-phenylmaleimide in ethyl acetate. 1,3-Cyclohexadiene and N-phenylmaleimide were selected to illustrate the Alder rule, which reflects a preference for endo products and to overcome the difficulties associated with the traditional combination of 1,3-cyclopentadiene and maleic anhydride.
Baar, Marsha R.; Wustholz, Kristin. J. Chem. Educ. 2005, 82, 1393.
Asymmetric Synthesis |
Microscale Lab |
Stereochemistry |
Addition Reactions |
Alkenes |
IR Spectroscopy |
NMR Spectroscopy
View all 19 articles
Other Resources: First 3 results
Interactive Molecular Orbitals  William F. Coleman
The majority of Introductory Chemistry texts provide students with an adequate introduction to the visual aspects of the molecular orbital model for homonuclear diatomic molecules. The treatment of heteronuclear diatomic and polyatomic molecules is less uniform. Heteronuclear diatomics, when mentioned, are invariably treated as being derived from homonuclear diatomics. While the atomic orbital energy level differences in heteronuclear diatomics is sometimes pictured, the consequences of those differences for the resultant molecular orbitals are rarely discussed. The discussion of polyatomic molecular orbitals in these texts is limited to showing that parallel p-orbitals produce delocalized pi molecular orbitals. The molecules typically mentioned in this context are benzene, nitrate ion and carbonate ion. However, It is rarely pointed out that the six p-orbitals in benzene would form 6 pi molecular orbitals, and that only one of these orbitals would look like the picture in the text.These interactive modules are designed to clarify this subject.
MO Theory
Molecular Orbitals  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
MO Theory |
Magnetic Properties
Delocalized Electrons  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Resonance Theory |
MO Theory
View all 10 results