TIGER

Journal Articles: 12 results
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Diels–Alder Synthesis of endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide  Marsha R. Baar and Kristin Wustholz
endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide was synthesized by a DielsAlder cycloaddition of 1,3-cyclohexadiene and N-phenylmaleimide in ethyl acetate. 1,3-Cyclohexadiene and N-phenylmaleimide were selected to illustrate the Alder rule, which reflects a preference for endo products and to overcome the difficulties associated with the traditional combination of 1,3-cyclopentadiene and maleic anhydride.
Baar, Marsha R.; Wustholz, Kristin. J. Chem. Educ. 2005, 82, 1393.
Asymmetric Synthesis |
Microscale Lab |
Stereochemistry |
Addition Reactions |
Alkenes |
IR Spectroscopy |
NMR Spectroscopy
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
A New Photochemistry Experiment, A Simple 2+2 Photocycloaddition that Poses an Interesting NMR Problem   John T. Magner, Matthias Selke, Arlene A. Russell, Orville L. Chapman
The cycloaddition of -nitrostyrene to 2,3-dimethyl-1,3-butadiene provides an extremely clean example of 2 + 2 cycloaddition. This laboratory exercise combines theory, technique, spectroscopy, and data interpretation.
J. Chem. Educ. 1996, 73, 854.
Photochemistry |
NMR Spectroscopy |
Qualitative Analysis |
Instrumental Methods |
Addition Reactions |
Mechanisms of Reactions
Higher order cycloaddition reactions of adamantyl isobenzofulvene and isobenzofuran: A microscale synthesis illustrating the involvement of highly reactive intermediates and a simple FMO treatment of their cycloaddition periselectivities  Russell, Richard A.; Longmore, Robert W.; Warrener, Ronald N.
The authors have developed an undergraduate laboratory experiment to illustrate a cycloaddition reaction using a simple mathematical approach.
Russell, Richard A.; Longmore, Robert W.; Warrener, Ronald N. J. Chem. Educ. 1992, 69, 164.
Microscale Lab |
Alkenes |
Synthesis |
MO Theory
A laboratory study of 1,3-dipole-dipolarophile addition: An extension of the Diels Alder reaction  Gingrich, Henry L.; Pickering, Miles
Some easy organic reactions that can also be used as the basis for puzzles, or as facile heterocyclic syntheses: an area neglected in the student experiment literature.
Gingrich, Henry L.; Pickering, Miles J. Chem. Educ. 1991, 68, 614.
Mechanisms of Reactions |
Addition Reactions |
Synthesis |
Heterocycles |
Physical Properties |
NMR Spectroscopy
Synthesis of azulene, a blue hydrocarbon  Lemal, David M.; Goldman, Glenn D.
A procedure of the synthesis of this simple, beautiful, and theoretically interesting compound with many unusual properties.
Lemal, David M.; Goldman, Glenn D. J. Chem. Educ. 1988, 65, 923.
MO Theory |
Aromatic Compounds |
Diastereomers |
Synthesis
Ligand replacement at a square planar metal center: A kinetic experiment for the inorganic chemistry laboratory  Kruger, H.; de Waal, D. J. A.
The ligand triphenyl phosphine is replaced from a rhodium metal center by a series of pyridine derivatives; this system will introduce students to stopped-flow spectrophotometry as a technique to study the kinetics of very fast reactions.
Kruger, H.; de Waal, D. J. A. J. Chem. Educ. 1987, 64, 262.
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Kinetics |
Transition Elements |
Metals
Project for problem-oriented undergraduate organic or integrated undergraduate laboratory  Silveira, Augustine, Jr.
This paper reports on an open-ended project which allows a great degree of flexibility in the laboratory. The project provided about a 6-week study for groups of 24 students each.
Silveira, Augustine, Jr. J. Chem. Educ. 1978, 55, 57.
Synthesis |
Undergraduate Research |
Spectroscopy |
Diastereomers |
Addition Reactions |
MO Theory |
Elimination Reactions |
Thermodynamics |
Kinetics
Stereospecific thermal cycloadditions and catalyzed isomerizations: An organic laboratory project  Pasto, D. J.; Duncan, J. A.; Silversmith, E. F.
The authors have prepared a sequence of experiments for their undergraduate organic chemistry laboratory concerned with the preparation of cis and trans 1,4-diphenyl-2-butene-1,4diones, their cycloadditions reactions with cyclopentandiene, and with related isomerization reactions of both the sequence, which has met with much success experimentally, clearly and collectively demonstrates certain aspects of the concepts of thermodynamics, kinetics, and stereochemistry and photochemistry.
Pasto, D. J.; Duncan, J. A.; Silversmith, E. F. J. Chem. Educ. 1974, 51, 277.
Photochemistry |
Constitutional Isomers |
Addition Reactions
Models to illustrate orbital symmetry effects in organic reactions  Brown, Peter
From a pedagogic point of view, conservation of orbital symmetry is easily assimilated by students with a rudimentary knowledge of simple MO theory and of symmetry. The author has found in teaching over the past three years at both graduate and undergraduate levels that use of a simple set of orbital models as described in this article has enormous advantages as a visual aid in the construction and assignment of symmetry elements to the appropriate semi-localized Huckel-type MOs and in following their stereo chemical fate in concerned reactions.
Brown, Peter J. Chem. Educ. 1971, 48, 535.
Molecular Modeling |
MO Theory |
Group Theory / Symmetry
A pseudo first-order-second-order kinetics experiment: An illustration of the Guggenheim method  Ahmad, Mushlaq; Hamer, Jan
The rate of one of the typical reactions of the aromatic nitroso group is determined spectrophotometrically employing the Guggenheim method.
Ahmad, Mushlaq; Hamer, Jan J. Chem. Educ. 1964, 41, 249.
Kinetics |
Rate Law |
Aromatic Compounds |
Spectroscopy