TIGER

Journal Articles: 24 results
The Synthesis of N-Benzyl-2-azanorbornene via Aqueous Hetero Diels–Alder Reaction  Xavier Sauvage and Lionel Delaude
Characterization of the product of this organic synthesis through IR and NMR data analysis provides valuable material to familiarize students with different types of protonproton coupling patterns and their typical ranges, serves to illustrate the concepts of green chemistry and atom efficiency, and can be used to exemplify structural analysis and computational studies.
Sauvage, Xavier; Delaude, Lionel. J. Chem. Educ. 2008, 85, 1538.
Alkenes |
Aqueous Solution Chemistry |
Conformational Analysis |
Green Chemistry |
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Stereochemistry |
Synthesis
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Quantitative Measurement of Trans-Fats by Infrared Spectroscopy  Edward B. Walker, Don R. Davies, and Mike Campbell
FTIR-ATR spectroscopy provides an efficient analytical tool to measure the percentage of trans-fat in several commercially available lipids and the degree of alkene isomerization induced by brominationdebromination chemical reactions.
Walker, Edward B.; Davies, Don R.; Campbell, Mike. J. Chem. Educ. 2007, 84, 1162.
Alkenes |
Calibration |
Food Science |
Instrumental Methods |
IR Spectroscopy |
Lipids |
Quantitative Analysis |
Fatty Acids
Electronic Structure Principles and Aromaticity  P. K. Chattaraj, U. Sarkar, and D. R. Roy
Electronic structure principles dictate that aromatic molecules are associated with low energy, polarizability, and electrophilicity but high hardness values, while antiaromatic molecules possess the opposite characteristics. These relationships are demonstrated through B3LYP/6-311G** calculations on benzene and cyclobutadiene.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. J. Chem. Educ. 2007, 84, 354.
Aromatic Compounds |
Molecular Properties / Structure |
Quantitative Analysis |
Theoretical Chemistry |
Alkenes |
Quantum Chemistry
Photochemical Dimerization of Dibenzylideneacetone. A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  G. Nageswara Rao, Chelli Janardhana, V. Ramanathan, T. Rajesh, and P. Harish Kumar
Presents a laboratory procedure for the photochemical dimerization of dibenzylideneacetone, a dienone. The dimerization is confirmed by chemical ionization mass spectrometry, and other spectroscopic techniques are used to establish the structure of the product.
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish. J. Chem. Educ. 2006, 83, 1667.
Aldehydes / Ketones |
Alkenes |
Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Photochemistry |
Thin Layer Chromatography
Regioselective Synthesis of a Stereodefined Heterocyclic Push–Pull Alkene. 1H NMR Studies and Two-Dimensional TLC Illustrating Z/E Isomerization  Rade Markovi, Marija Baranac, Vesna Jovanovi, and Zdravko Dambaski
Facile and direct regioselective synthesis of the 4-oxothiazolidine derivative from inexpensive chemicals as an example of kinetic versus thermodynamic control is described.
Markovi, Rade; Baranac, Marija; Jovanovi, Vesna; Dambaski, Zdravko. J. Chem. Educ. 2004, 81, 1026.
Heterocycles |
Alkenes |
Stereochemistry |
Synthesis |
NMR Spectroscopy
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Colorful Azulene and Its Equally Colorful Derivatives  Robert S. H. Liu
Analysis of azulene and related compounds for an explanation of their respective colors.
Liu, Robert S. H. J. Chem. Educ. 2002, 79, 183.
Atomic Properties / Structure |
MO Theory |
UV-Vis Spectroscopy |
Aromatic Compounds |
Alkenes
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Nitroalkenes: Conjugate Nitro Compounds (Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V. M.; Efremov, D. A.)  
Monograph.
J. Chem. Educ. 1995, 72, A93.
Alkenes
The Addition of Hydrogen Bromide to Simple Alkenes  Hilton M. Weiss
Synthesis of 1-bromohexane.
Weiss, Hilton M. . J. Chem. Educ. 1995, 72, 848.
Synthesis |
Mechanisms of Reactions |
Addition Reactions |
Alkenes
An Attention-Getting Model for Atomic Orbitals  Kiefer, Edgar F.
Tapping a spoon on a coffee mug to illustrate the circular orbitals of benzene.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 500.
MO Theory |
Aromatic Compounds
The Wittig synthesis of alkenes by phase-transfer catalysis: The syntheses of 4,4'-dichlorostilbenes and of E, E-1,4 -diphenylbutadiene   Breuer, Stephen W.
The syntheses of 4,4'-dichlorostilbenes and of E, E-1,4 -diphenylbutadiene.
Breuer, Stephen W. J. Chem. Educ. 1991, 68, A58.
Synthesis |
Microscale Lab |
Alkenes |
Aromatic Compounds
A convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety  Price, William A.; Patten, Timothy E.
Description of a convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety.
Price, William A.; Patten, Timothy E. J. Chem. Educ. 1991, 68, 256.
Synthesis |
Alcohols |
Alkenes |
NMR Spectroscopy
The stereochemistry of additions to trans-anethole  McGahey, Lawrence
Trans-anethole is brominated with pyridinium bromide perbromide in dichloromethane.
McGahey, Lawrence J. Chem. Educ. 1990, 67, 554.
Addition Reactions |
Stereochemistry |
Mechanisms of Reactions |
Alkenes |
Diastereomers |
Enantiomers
Synthesis of azulene, a blue hydrocarbon  Lemal, David M.; Goldman, Glenn D.
A procedure of the synthesis of this simple, beautiful, and theoretically interesting compound with many unusual properties.
Lemal, David M.; Goldman, Glenn D. J. Chem. Educ. 1988, 65, 923.
MO Theory |
Aromatic Compounds |
Diastereomers |
Synthesis
Toward an organic chemist's periodic table  Hall, H. K., Jr.
An analogy between electron transfer reactions of the elements and those of organic molecules.
Hall, H. K., Jr. J. Chem. Educ. 1980, 57, 49.
MO Theory |
Reactions |
Mechanisms of Reactions
Novel pictorial approach to teaching MO concepts in polyatomic molecules  Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G.
Methods used in a one-quarter course to familiarize students with the general applicability of delocalized and localized molecular orbitals to polyatomic systems; includes examples of delocalized and localized molecular orbitals of XeF2, C3H3+, CH4, and CO2.
Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G. J. Chem. Educ. 1977, 54, 590.
MO Theory |
Atomic Properties / Structure
Ethylene by naphtha cracking. Free radicals in action  Wiseman, Peter
Ethylene manufacture, the mechanism of ethylene formation, maximizing ethylene yield, the effect of feedstock composition, and secondary reactions.
Wiseman, Peter J. Chem. Educ. 1977, 54, 154.
Free Radicals |
Industrial Chemistry |
Alkenes |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry
Localized and delocalized molecular orbital description of methane  Bernett, William A.
The purpose of this article is to show that the relationship between localized and delocalized molecular orbitals can be easily demonstrated for the case of methane.
Bernett, William A. J. Chem. Educ. 1969, 46, 746.
Molecular Properties / Structure |
MO Theory
Aromatic substitution  Duewell, H.
Reports on the use of the molecular orbit theory in a qualitative approach to the activation and orientation of substitution in aromatic systems.
Duewell, H. J. Chem. Educ. 1966, 43, 138.
Aromatic Compounds |
MO Theory |
Mechanisms of Reactions
Rules for molecular orbital structures  Meislich, Herbert
In view of the fact that molecular orbital theory makes more correct predictions and avoids the misconceptions that arise in the minds of novice students when they are exposed to resonance theory, it would be better to use M.O. theory as much as possible in teaching organic chemistry.
Meislich, Herbert J. Chem. Educ. 1963, 40, 401.
MO Theory |
Resonance Theory
Hyperconjugation: An elementary approach  Ferreira, Ricardo Carvalho
Presents kinetic, thermochemical, and spectroscopic evidence for hyperconjugation in organic species.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1952, 29, 554.
Alkenes