TIGER

Journal Articles: 46 results
Synthesis Explorer: A Chemical Reaction Tutorial System for Organic Synthesis Design and Mechanism Prediction  Jonathan H. Chen and Pierre Baldi
Synthesis Explorer is an interactive tutorial system for organic chemistry that enables students to learn chemical reactions in ways previously unrealized. Pedagogical experiments in undergraduate classes at UC Irvine indicate that the system can improve average student examination performance by ~10%.
Chen, Jonathan H.; Baldi, Pierre. J. Chem. Educ. 2008, 85, 1699.
Mechanisms of Reactions |
Reactions |
Synthesis
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Probing the Rate-Determining Step of the Claisen–Schmidt Condensation by Competition Reactions  Kendrew K. W. Mak, Wing-Fat Chan, Ka-Ying Lung, Wai-Yee Lam, Weng-Cheong Ng, and Siu-Fung Lee
This article describes a physical organic experiment to identify the rate-determining step of the ClaisenSchmidt condensation of benzaldehyde and acetophenone by studying the linear free energy relationship.
Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung. J. Chem. Educ. 2007, 84, 1819.
Aldehydes / Ketones |
Aromatic Compounds |
Gas Chromatography |
Kinetics |
Mechanisms of Reactions |
Synthesis
Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones  Nicholas G. Angelo, Laura K. Henchey, Adam J. Waxman, James W. Canary, Paramjit S. Arora, and Donald Wink
Describes an experiment in which students perform the aldol condensation on an unknown aldehyde and ketone and make use of TLC, column chromatography, recrystallization, and characterization by 1H NMR, GCMS, and FTIR.
Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald. J. Chem. Educ. 2007, 84, 1816.
Aldehydes / Ketones |
Chromatography |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Thin Layer Chromatography
The A1c Blood Test: An Illustration of Principles from General and Organic Chemistry  Robert C. Kerber
The glycated hemoglobin blood test is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1541.
Applications of Chemistry |
Bioinorganic Chemistry |
Carbohydrates |
Mechanisms of Reactions |
Proteins / Peptides |
Bioorganic Chemistry
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
Using Building-Block Puzzles To Practice Drawing Organic Mechanisms  Ender Erdik
This pencil-and-paper activity is designed to test the ability of students in writing intermediates and products in the reactions of ketones. An undergraduate student who is successful in organic chemistry at the sophomore level is expected to fill in empty boxes with the appropriate "building blocks", which are atoms and atom groups (neutral or ionic). Solving the puzzle will give the formulas of reactants, reactive intermediates, and products. Students test their understanding of reaction mechanisms while having fun.
Erdik, Ender. J. Chem. Educ. 2005, 82, 1325.
Reactive Intermediates |
Synthesis |
Aldehydes / Ketones |
Mechanisms of Reactions
The Darzens Condensation: Structure Determination through Spectral Analysis and Understanding Substrate Reactivity  R. David Crouch, Michael S. Holden, and Candice A. Romany
The Darzens condensation involves two steps that are typically included in the sophomore organic curriculum: an aldol reaction followed by an intramolecular nucleophilic substitution.
Crouch, R. David; Holden, Michael S.; Romany, Candice A. J. Chem. Educ. 2004, 81, 711.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Mechanisms of Reactions |
Aldehydes / Ketones
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
Preparing Students for Research: Synthesis of Substituted Chalcones as a Comprehensive Guided-Inquiry Experience  James R. Vyvyan, Donald L. Pavia, Gary M. Lampman, and George S. Kriz Jr.
An aldol condensation of substituted benzaldehydes with substituted acetophones to produce substituted benzalacetophenones (chalcones) in a guided-inquiry approach.
Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr. J. Chem. Educ. 2002, 79, 1119.
Medicinal Chemistry |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds |
Aldehydes / Ketones
The Michael Reaction  Thomas Poon, Bradford P. Mundy, and Thomas W. Shattuck
Biography, overview, computational analysis, and examples of the Michael reaction in organic syntheses and natural systems.
Poon, Thomas; Mundy, Bradford P.; Shattuck, Thomas W. J. Chem. Educ. 2002, 79, 264.
Computational Chemistry |
Synthesis |
Mechanisms of Reactions
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan)  reviewed Alan M. Rosan
Selective review of the burgeoning literature on organic reactions conducted in water or in aqueous media as a reaction cosolvent.
Rosan, Alan M. J. Chem. Educ. 2000, 77, 707.
Aqueous Solution Chemistry |
Reactions |
Synthesis |
Mechanisms of Reactions
Epoxide Chemistry: Guided Inquiry Experiment Emphasizing Structure Determination and Mechanism  H. G. Krishnamurty, Niveta Jain, and Kiran Samby
An operationally simple three-step synthesis of an a-hydroxy acid based on epoxide chemistry. The focus of the experiment is on the preparation of the chalcone epoxide and its reaction with hot alcoholic alkali. The experiment leads to an unpredicted reaction product.
Krishnamurty, H. G.; Jain, Niveta; Samby, Kiran. J. Chem. Educ. 2000, 77, 511.
Epoxides |
Molecular Properties / Structure |
Mechanisms of Reactions |
Synthesis
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Mechanisms in Motion-Organic Chemistry Animations v 1.5 (by Bruce H. Lipshutz)  Alan M. Rosan
This single CD-ROM presents 17 short (2-3-minute) Quicktime, full-color movie animations of selected organic reaction mechanisms, most of which are discussed at the sophomore level.
Rosan, Alan M. J. Chem. Educ. 1998, 75, 980.
Reactions |
Mechanisms of Reactions
A Simple Organic Microscale Experiment Illustrating the Equilibrium Aspect of the Aldol Condensation  Ernest A. Harrison Jr.
A simple microscale experiment has been developed that illustrates the equilibrium aspect of the aldol condensation by using two versions of the standard preparation of tetraphenylcyclopentadienone from benzil and 1,3-diphenyl- 2-propanone.
Harrison, Ernest A., Jr. J. Chem. Educ. 1998, 75, 636.
Equilibrium |
Reactions |
Mechanisms of Reactions |
Microscale Lab |
Aldehydes / Ketones
Mechanism Templates: Lecture Aids for Effective Presentation of Mechanism in Introductory Organic Chemistry  Brian J. McNelis
To promote active student learning of mechanism in introductory organic chemistry, hand-outs have been developed with incomplete structures for reaction processes depicted, which are called mechanism templates. The key to these lecture aids is to provide only enough detail in the diagram to facilitate notetaking, ensuring that these templates are dynamic learning tools that must be utilized by an engaged and alert student.
Brian J. McNelis. J. Chem. Educ. 1998, 75, 479.
Learning Theories |
Mechanisms of Reactions |
Reactions |
Addition Reactions |
Acids / Bases |
Electrophilic Substitution |
Nucleophilic Substitution
Incorporating Organic Name Reactions and Minimizing Qualitative Analysis in an Unknown Identification Experiment  Claire Castro and William Karney
The authors have developed a new type of unknown identification experiment for the introductory organic chemistry laboratory. The unknown sample the student is provided with is the product of an organic name reaction. The student is only informed of the starting material and conditions used in the compound's synthesis, and must then: (1) deduce the compound's structure, (2) determine the name reaction and corresponding mechanism that yields the compound, and (3) present his/her results to the class.
Claire Castro and William Karney. J. Chem. Educ. 1998, 75, 472.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions |
Molecular Properties / Structure
An Efficient Microscale Procedure for the Preparation of 3,5-Dinitrobenzoates  Richard F. Smith and Gaetano M. Cristalli
A laboratory to introduce the concept and technique of mass spectroscopy to introductory organic students; sample data and analysis included.
Smith, Richard F.; Cristalli, Gaetano M. J. Chem. Educ. 1995, 72, A160.
Mass Spectrometry |
Gas Chromatography |
Aldehydes / Ketones |
Instrumental Methods |
Qualitative Analysis |
Microscale Lab
The Baylis-Hillman Reaction: Synthesizing a Compound and Explaining Its Formation  Crouch, R. David; Nelson, Todd D.
Experimental procedure for the synthesis of an unpredictable and unknown mechanism to be identified and described by students through analytical techniques (spectroscopy).
Crouch, R. David; Nelson, Todd D. J. Chem. Educ. 1995, 72, A6.
Synthesis |
Mechanisms of Reactions |
NMR Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Microscale Lab
The AC Rule: An Algorithm for Organic Reactions  Edgar F. Kiefer
Algorithm for predicting organic reaction mechanisms.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 906.
Mechanisms of Reactions |
Synthesis |
Reactions
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
Schiff base puzzle project.  Todd, David.
Students pick an unknown substituted aniline and a substituted benzaldehyde, produces the corresponding Schiff base from them, and compares its melting point to those of 25 possible Schiff bases (their structures and melting points being given).
Todd, David. J. Chem. Educ. 1992, 69, 584.
Qualitative Analysis |
Aldehydes / Ketones |
Amines / Ammonium Compounds
A novel ketone derivative  Melamedi, Dan; Pickering, Miles
The authors propose the use of thioketals as derivatives as a safer alternative that also illustrates an interesting but rarely visited corner of undergraduate organic chemistry.
Melamedi, Dan; Pickering, Miles J. Chem. Educ. 1991, 68, 1046.
Aldehydes / Ketones
Organic Reaction Chemistry, Review I (Flash, P.; Bendall, V.)  Hargis, J. H.
Six different programs which allow the user to identify functional groups, supply the missing reagent necessary to complete a given reaction, deduce the product of a given reaction, ascertain whether a given reaction will go, search the reaction database for functional group conversions, and search for the utility of a certain reagent.
Hargis, J. H. J. Chem. Educ. 1989, 66, A170.
Reactions |
Enrichment / Review Materials |
Mechanisms of Reactions |
Nomenclature / Units / Symbols
A tandem Michael-aldol reaction sequence: An undergraduate research organic experiment  Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T.
A short reaction sequence that allows students to determine by spectroscopic methods the constitutions of and stereochemistry in the reaction products.
Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T. J. Chem. Educ. 1989, 66, 520.
Mechanisms of Reactions |
Spectroscopy |
Stereochemistry |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
Example of the Robinson annulation procedure via phase transfer catalysis a beginning organic synthesis experiment  Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D.
A brief description of the procedure.
Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D. J. Chem. Educ. 1988, 65, 637.
Catalysis |
Aromatic Compounds |
Synthesis |
Aldehydes / Ketones
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
An aldol condensation experiment using a number of aldehydes and ketones  Hathaway, Bruce A.
Four aldehydes and four ketones can be used to synthesize sixteen different products via an aldol condensation reaction.
Hathaway, Bruce A. J. Chem. Educ. 1987, 64, 367.
Aldehydes / Ketones
Michael addition and aldol condensation: A simple teaching model for organic laboratory  Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R.
Three experiments are presented in this paper: Michael addition; Michael addition followed by aldol addition; and Michael addition followed by aldol condensation.
Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R. J. Chem. Educ. 1986, 63, 443.
Addition Reactions |
Aldehydes / Ketones |
Alcohols
Acetaldehyde: a chemical whose fortunes have changed  Wittcoff, Harold A.
Acetaldehyde is an example of a chemical whose use is declining because chemists have replaced it with superior chemicals.
Wittcoff, Harold A. J. Chem. Educ. 1983, 60, 1044.
Aldehydes / Ketones |
Applications of Chemistry
Preparation of vanillin from eugenol and sawdust  Lampman, Gary M.; Andrews, Jennifer; Bratz, Wayne; Hanssen, Otto; Kelley, Kenneth; Perry, Dana; Ridgeway, Anthony
Two procedures are described for the conversion of eugenol to vanillin.
Lampman, Gary M.; Andrews, Jennifer; Bratz, Wayne; Hanssen, Otto; Kelley, Kenneth; Perry, Dana; Ridgeway, Anthony J. Chem. Educ. 1977, 54, 776.
Synthesis |
Consumer Chemistry |
Food Science |
Mechanisms of Reactions |
Aromatic Compounds |
Oxidation / Reduction
A crossed aldol condensation for the undergraduate laboratory  Angres, Isaac; Zieger, Herman E.
This two-step experiment for undergraduate organic chemistry students illustrates three basic ideas: organic chemistry students illustrate three basic ideas (1) crossed aldol condensation; (2) the acidity of benzylic hydrogen in hydrocarbons; and (3) reduction of a double bond in hydride transfer.
Angres, Isaac; Zieger, Herman E. J. Chem. Educ. 1974, 51, 64.
Aromatic Compounds |
Aldehydes / Ketones |
Acids / Bases |
Alcohols
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Fluorine compounds as teaching aids in organic theory  Young, John A.
Fluorine compounds do obey the fundamental tenets of organic theory, but their frequent reversal of polarity, relative to hydrocarbon analogs, and the change in emphasis from a positive hydrogen ion to a negative fluoride ion allow the instructor to frame questions that demand reasoning rather than reiteration on the part of the student.
Young, John A. J. Chem. Educ. 1970, 47, 733.
Aromatic Compounds |
Mechanisms of Reactions
Nucleophilic reactions at trigonally bonded carbon  Cash, R. Vincent
Examines the mechanisms of nucleophilic displacement reactions, nucleophilic addition reactions, and nucleophilic addition with elimination, all at trigonally bonded carbon.
Cash, R. Vincent J. Chem. Educ. 1964, 41, 108.
Nucleophilic Substitution |
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions
An aid to teaching electronic theory  Humffray, A. A.
This paper outlines the method used by the author in presenting the ideas of tautomerism and electronic theory.
Humffray, A. A. J. Chem. Educ. 1953, 30, 635.
Molecular Properties / Structure |
Mechanisms of Reactions