TIGER

Journal Articles: 8 results
Analytical Spectroscopy Using Modular Systems  Brian M. Patterson, Neil D. Danielson, Gary A. Lorigan, and André J. Sommer
This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UVĀvis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material.
Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J. J. Chem. Educ. 2003, 80, 1460.
Fluorescence Spectroscopy |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Raman Spectroscopy |
UV-Vis Spectroscopy |
Aromatic Compounds |
Esters |
Carboxylic Acids |
Alcohols
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
Preparation and Identification of Benzoic Acids and Benzamides: An Organic "Unknown" Lab  Douglass F. Taber, Jade D. Nelson, and John P. Northrop
The reaction of an unknown substituted benzene derivative with oxalyl chloride and aluminum chloride gives the acid chloride. Hydrolysis of the acid chloride gives the acid, and reaction of the acid with concentrated aqueous ammonia gives the benzamide. The equivalent weight of the acid can be determined by titration; given this information and the melting points of the acid and the benzamide, it is possible to deduce the structure of the initial unknown.
Taber, Douglass F.; Nelson, Jade D.; Northrop, John P. J. Chem. Educ. 1999, 76, 828.
Qualitative Analysis |
Aromatic Compounds |
Carboxylic Acids
3-Ketoesters by malonic synthesis  Pollet, Patrick L.
This essay reviews a synthesis strategy.
Pollet, Patrick L. J. Chem. Educ. 1983, 60, 244.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones |
Alkylation
Purification by sub-zero temperature washing  Chu, Samuel S.-T.
Separating an ester from the carboxylic acid from which it was synthesized.
Chu, Samuel S.-T. J. Chem. Educ. 1979, 56, 384.
Synthesis |
Esters |
Carboxylic Acids |
Laboratory Management
p-Carboxystyrene. A Wittig procedure in aqueous medium  Broos, Rene; Tavernier, Dirk; Anteunis, Marc
In this paper, the authors present a student preparation of p-carboxyl group, as it makes the reaction product soluble in alkaline and insoluble in acid medium, provides for an easy way of separation.
Broos, Rene; Tavernier, Dirk; Anteunis, Marc J. Chem. Educ. 1978, 55, 813.
Aqueous Solution Chemistry |
Acids / Bases |
Carboxylic Acids |
Separation Science
Identification of an unknown ester: An analytical-organic experiment  Grob, Robert L.; Husk, G. Ronald
It is the student's challenge to hydrolyze an ester, separate and purify the resultant alcohol and acid, determine several physical and chemical characteristics, and arrive at a logical choice for its identity.
Grob, Robert L.; Husk, G. Ronald J. Chem. Educ. 1969, 46, 769.
Quantitative Analysis |
Esters |
Alcohols |
Carboxylic Acids
Identification of carboxylic acids: Use of N-methylpiperazine and N-phenylpiperazine  Duff, J. G.; Yung, D. K.; Brenner, R. J.; Wilson, B. J.; Racz, W. J.
Demonstrates that N-phenylpiperazine is a useful reagent for the identification of carboxylic acids.
Duff, J. G.; Yung, D. K.; Brenner, R. J.; Wilson, B. J.; Racz, W. J. J. Chem. Educ. 1969, 46, 388.
Carboxylic Acids |
Qualitative Analysis