TIGER

Journal Articles: 52 results
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
Acid-Catalyzed Enolization of β-Tetralone  Brahmadeo Dewprashad, Anthony Nesturi, and Joel Urena
This experiment allows students to use 1H NMR to compare the rates of substitution of benzylic and non-benzylic a hydrogens of -tetralone and correlate their findings with predictions made by resonance theory.
Dewprashad, Brahmadeo; Nesturi, Anthony; Urena, Joel. J. Chem. Educ. 2008, 85, 829.
Aldehydes / Ketones |
Isotopes |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactive Intermediates |
Resonance Theory |
Synthesis
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol  Bruce M. Branan, Joshua T. Butcher, and Lawrence R. Olsen
This organic laboratory involves the ozonolysis of eugenol (clove oil) followed by a reductive workup that generates an aldehyde easily identified by its NMR and IR spectra.
Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R. J. Chem. Educ. 2007, 84, 1979.
Aldehydes / Ketones |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Natural Products |
NMR Spectroscopy |
Synthesis |
Oxidation / Reduction
Determination of Solvent Effects on Keto—Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR  A. Gilbert Cook and Paul M. Feltman
Expands the classic physical chemistry experiment using of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents.
Cook, A. Gilbert; Feltman, Paul M. J. Chem. Educ. 2007, 84, 1827.
Aldehydes / Ketones |
Equilibrium |
Hydrogen Bonding |
Molecular Modeling |
Molecular Properties / Structure |
NMR Spectroscopy |
Solutions / Solvents |
Thermodynamics
Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones  Nicholas G. Angelo, Laura K. Henchey, Adam J. Waxman, James W. Canary, Paramjit S. Arora, and Donald Wink
Describes an experiment in which students perform the aldol condensation on an unknown aldehyde and ketone and make use of TLC, column chromatography, recrystallization, and characterization by 1H NMR, GCMS, and FTIR.
Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald. J. Chem. Educ. 2007, 84, 1816.
Aldehydes / Ketones |
Chromatography |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Thin Layer Chromatography
Photochemical Dimerization of Dibenzylideneacetone. A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  G. Nageswara Rao, Chelli Janardhana, V. Ramanathan, T. Rajesh, and P. Harish Kumar
Presents a laboratory procedure for the photochemical dimerization of dibenzylideneacetone, a dienone. The dimerization is confirmed by chemical ionization mass spectrometry, and other spectroscopic techniques are used to establish the structure of the product.
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish. J. Chem. Educ. 2006, 83, 1667.
Aldehydes / Ketones |
Alkenes |
Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Photochemistry |
Thin Layer Chromatography
A Discovery-Learning 2,4-Dinitrophenylhydrazone Experiment  Bruno M. Vittimberga and Ben Ruekberg
Selections of liquid aldehydes and ketones are proposed for students to determine what property is the best predictor of the color (yellow to red) of their 2,4-dinitrophenylhydrazone derivative. Students may use a computer (spreadsheet or word processor) to analyze their results.
Vittimberga, Bruno M.; Ruekberg, Ben. J. Chem. Educ. 2006, 83, 1661.
Aldehydes / Ketones |
Molecular Properties / Structure |
Physical Properties |
Qualitative Analysis
Microwave-Mediated Synthesis of Lophine: Developing a Mechanism To Explain a Product   R. David Crouch, Jessica L. Howard, Jennifer L. Zile, and Kathryn H. Barker
Describes the microwave-mediated preparation of lophine (2,4,5-triphenylimidazole). The experiment also provides an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the product.
Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H. J. Chem. Educ. 2006, 83, 1658.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Aromatic Compounds |
Microscale Lab |
Molecular Modeling |
Synthesis |
NMR Spectroscopy
Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory  Jacqueline Bennett, Kristen Meldi, and Christopher Kimmell II
In this experiment students prepare and analyze N-p-methoxyphenyl (N-PMP) alpha-imino ethyl glyoxalate, an imine that has been used in the synthesis of biologically active molecules. The stability and versatility of this imine allow it to be used in subsequent reactions, offering a variety of possible multistep synthetic strategies.
Bennett, Jacqueline; Meldi, Kristen; Kimmell, Christopher, II. J. Chem. Educ. 2006, 83, 1221.
Aldehydes / Ketones |
Gas Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
Using Building-Block Puzzles To Practice Drawing Organic Mechanisms  Ender Erdik
This pencil-and-paper activity is designed to test the ability of students in writing intermediates and products in the reactions of ketones. An undergraduate student who is successful in organic chemistry at the sophomore level is expected to fill in empty boxes with the appropriate "building blocks", which are atoms and atom groups (neutral or ionic). Solving the puzzle will give the formulas of reactants, reactive intermediates, and products. Students test their understanding of reaction mechanisms while having fun.
Erdik, Ender. J. Chem. Educ. 2005, 82, 1325.
Reactive Intermediates |
Synthesis |
Aldehydes / Ketones |
Mechanisms of Reactions
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery  John W. Nicholson and Alan Wilson
This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries.
Nicholson, John W.; Wilson, Alan. J. Chem. Educ. 2004, 81, 1362.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones
The Darzens Condensation: Structure Determination through Spectral Analysis and Understanding Substrate Reactivity  R. David Crouch, Michael S. Holden, and Candice A. Romany
The Darzens condensation involves two steps that are typically included in the sophomore organic curriculum: an aldol reaction followed by an intramolecular nucleophilic substitution.
Crouch, R. David; Holden, Michael S.; Romany, Candice A. J. Chem. Educ. 2004, 81, 711.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Mechanisms of Reactions |
Aldehydes / Ketones
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
Preparing Students for Research: Synthesis of Substituted Chalcones as a Comprehensive Guided-Inquiry Experience  James R. Vyvyan, Donald L. Pavia, Gary M. Lampman, and George S. Kriz Jr.
An aldol condensation of substituted benzaldehydes with substituted acetophones to produce substituted benzalacetophenones (chalcones) in a guided-inquiry approach.
Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr. J. Chem. Educ. 2002, 79, 1119.
Medicinal Chemistry |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds |
Aldehydes / Ketones
The TCICA Test for Distinguishing Aldehydes and Ketones  Gene A. Hiegel, Christine Juska, and Michelle Kim
Distinguishing aldehydes from ketones through their reaction with TCICA (trichloroisocyanuric acid).
Hiegel, Gene A.; Juska, Christine; Kim, Michelle. J. Chem. Educ. 2001, 78, 1105.
Qualitative Analysis |
Aldehydes / Ketones
Reduction of 2,6-Dimethylcyclohexanone with Sodium Borohydride Revisited: A Correction on the Structural Assignments of the Products, and the Discovery of a Solvent Effect  Bruce A. Hathaway
Changing the solvent from methanol to ethanol produced a different ratio of cis-cis to trans-trans than was reported in the original work. Therefore, a short series of solvents was investigated to determine if there was a solvent effect. The results indicate that as the size and bulk of the solvent increase, the proportion of the trans alcohol product increases.
Hathaway, Bruce A. J. Chem. Educ. 1998, 75, 1623.
Stereochemistry |
NMR Spectroscopy |
Aldehydes / Ketones |
Alcohols
A Simple Organic Microscale Experiment Illustrating the Equilibrium Aspect of the Aldol Condensation  Ernest A. Harrison Jr.
A simple microscale experiment has been developed that illustrates the equilibrium aspect of the aldol condensation by using two versions of the standard preparation of tetraphenylcyclopentadienone from benzil and 1,3-diphenyl- 2-propanone.
Harrison, Ernest A., Jr. J. Chem. Educ. 1998, 75, 636.
Equilibrium |
Reactions |
Mechanisms of Reactions |
Microscale Lab |
Aldehydes / Ketones
Cinnamaldehyde by Steam Distillation of Cinnamon  Douglass F. Taber and Andrew J. Weiss
Powdered cinnamon foams badly on attempted steam distillation. It has been demonstrated that preliminary iterative evacuation of the aqueous mixture allows smooth distillation of cinnamaldehyde (I).
Taber, Douglass F.; Weiss, Andrew J. J. Chem. Educ. 1998, 75, 633.
Aldehydes / Ketones |
Aromatic Compounds
An Aldehyde Derivative  J. Hodge Markgraf and Bo Yoon Choi
A system in which aldehydes are condensed with 1,2-benzenedimethylthiol in the presence of anhydrous ferric chloride on silica gel to give 3-substituted 1,5-dihyhdro-2,4-benzodithiepines. Melting points of the derivatives were taken as a means of identification of unknown compounds.
Markgraf, J. Hodge; Choi, Bo Yoon. J. Chem. Educ. 1998, 75, 222.
Aldehydes / Ketones |
Synthesis
Nucleophilic Addition vs. Substituion: A Puzzle for the Organic Laboratory  Ernest F. Silversmith
The chemistry of beta-carbonyl compounds is studied. Beta-carbonyl compounds react with hydrazines to give products with a 5-membered ring containing two nitrogens. The experiment makes students determine whether ethyl 2-acetyl-3-oxobutanoate reacts like a beta-diketone or like a beta-keto ester.
Silversmith, Ernest F. J. Chem. Educ. 1998, 75, 221.
Learning Theories |
Nucleophilic Substitution |
Aldehydes / Ketones |
Esters |
Mechanisms of Reactions
Acetone and Ethyl Acetate in Commercial Nail Polish Removers: A Quantitative NMR Experiment Using an Internal Standard  David W. Clarke
The qualitative and quantitative analysis of commercial nail polish removers is performed on a 60 MHz NMR spectrometer. After taking NMR spectra of the polish removers, students can make peak assignments for the known components of acetone and ethyl acetate. Using these spectra, students are also able to identify the unknown alcohol present in the remover as ethanol.
Clarke, David W. J. Chem. Educ. 1997, 74, 1464.
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Aldehydes / Ketones
A -78°C Sequential Michael Addition for the Organic Lab  Michael W. Tanis
This paper introduces a cold-temperature enolate alkylation reaction that can be performed safely and inexpensively by undergraduate students in approximately two 3-hour lab sessions.
Tanis, Michael W. J. Chem. Educ. 1997, 74, 112.
Addition Reactions |
Alkenes |
Aldehydes / Ketones |
Synthesis
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
An Efficient Microscale Procedure for the Preparation of 3,5-Dinitrobenzoates  Richard F. Smith and Gaetano M. Cristalli
A laboratory to introduce the concept and technique of mass spectroscopy to introductory organic students; sample data and analysis included.
Smith, Richard F.; Cristalli, Gaetano M. J. Chem. Educ. 1995, 72, A160.
Mass Spectrometry |
Gas Chromatography |
Aldehydes / Ketones |
Instrumental Methods |
Qualitative Analysis |
Microscale Lab
Discovery-Based Microscale Catalytic Decarbonylation of Aldehydes  Pearsall, Mary-Ann; Rosen, Alan M.; Conrad, Jennifer S.; Hendrickson, Carrie A.; Pacchia, Ann Marie L.; Schantz, Daniel J.
Experimental procedure for decarbonylation of aldehydes by heating over a palladium/carbon catalyst.
Pearsall, Mary-Ann; Rosen, Alan M.; Conrad, Jennifer S.; Hendrickson, Carrie A.; Pacchia, Ann Marie L.; Schantz, Daniel J. J. Chem. Educ. 1995, 72, A29.
Synthesis |
Catalysis |
Aldehydes / Ketones |
Microscale Lab
A Centenary Synthesis of Carone and Dicarvelone  Armstead, D. E. F.
Procedure for synthesizing carone and dicarvelone.
Armstead, D. E. F. J. Chem. Educ. 1995, 72, 550.
Synthesis |
Aldehydes / Ketones
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
Synthesis and Spectroscopic Study of Plant Growth Regulators Phenylpyridylureas: An "Agrorganic" Undergraduate Laboratory Experiment  Hocquet, Alexandre; Tohier, Jacques; Fournier, Josette
This lab could represent an undergraduate comparative synthesis and analysis of biologically active molecules, suitable for an introductory lab session.
Hocquet, Alexandre; Tohier, Jacques; Fournier, Josette J. Chem. Educ. 1994, 71, 1092.
Agricultural Chemistry |
Drugs / Pharmaceuticals |
Aldehydes / Ketones |
Aromatic Compounds |
Synthesis
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.  Lee, Moses.
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.
Lee, Moses. J. Chem. Educ. 1992, 69, A172.
Microscale Lab |
Synthesis |
Aldehydes / Ketones |
Fourier Transform Techniques |
NMR Spectroscopy |
IR Spectroscopy |
Gas Chromatography |
Thin Layer Chromatography |
Instrumental Methods
Schiff base puzzle project.  Todd, David.
Students pick an unknown substituted aniline and a substituted benzaldehyde, produces the corresponding Schiff base from them, and compares its melting point to those of 25 possible Schiff bases (their structures and melting points being given).
Todd, David. J. Chem. Educ. 1992, 69, 584.
Qualitative Analysis |
Aldehydes / Ketones |
Amines / Ammonium Compounds
Enhancing interest in organic chemistry. Part I. Relating redolence in organic chemistry class.  Smith, Terrill D.
The author supplies a list of compounds that can be passed around in class for students to guess their origin from an odor.
Smith, Terrill D. J. Chem. Educ. 1992, 69, 233.
Esters |
Aldehydes / Ketones |
Alcohols |
Phenols
Beta-keto esters from tin(II) chloride catalyzed reactions of aldehydes with ethyl diazoacetate: An undergraduate laboratory experiment drawn from the current literature  Brockwell, Joyce C.; Holmquist, Christopher R.
This is an experimental procedure for producing longer-chain keto esters from unconjugated aldehydes on reaction with ethyl diazoacetate catalyzed by Lewis acids for use in an undergraduate laboratory.
Brockwell, Joyce C.; Holmquist, Christopher R. J. Chem. Educ. 1992, 69, 68.
Catalysis |
Synthesis |
Lewis Acids / Bases |
Aldehydes / Ketones |
Esters
The malonic ester synthesis in the undergraduate laboratory  Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D.
The versatile reactions of diethyl malonate represent an important lecture topic in introductory organic courses, but are only rarely performed in the lab because of several problems associated with performing these reactions. These authors present a lab the circumvents some of the typical problems.
Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D. J. Chem. Educ. 1991, 68, 689.
Aromatic Compounds |
Aldehydes / Ketones |
Amino Acids |
Heterocycles |
Amides
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
Sherlock Holmes and the fraudulent ketone  Waddell, Thomas G.; Rybolt, Thomas R.
A chemical mystery featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 1990, 67, 1006.
Enrichment / Review Materials |
Aldehydes / Ketones
Synthesis of 5-nitrofurfural diacetate and 5-nitrofurfural semicarbazone: An undergraduate laboratory experiment  Li, Xiaorong; Liu, Qianguang; Chang, James C.
Demonstrates how to nitrate an aromatic compound having an aldehyde group that can be oxidized by nitrating agents.
Li, Xiaorong; Liu, Qianguang; Chang, James C. J. Chem. Educ. 1990, 67, 986.
Synthesis |
Aldehydes / Ketones |
Esters |
Ethers |
Electrophilic Substitution |
Aromatic Compounds |
NMR Spectroscopy
Laboratory experiments on phase-transfer-catalyzed reactions of neutral molecules  Mathur, Nawal K.; Narang, Chander K.
In order to illustrate the application of a phase transfer catalyst (PTC), the preparation of benzophenone oxime was attempted under different conditions.
Mathur, Nawal K.; Narang, Chander K. J. Chem. Educ. 1990, 67, 273.
Catalysis |
Aromatic Compounds |
Aldehydes / Ketones |
Phases / Phase Transitions / Diagrams
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
Acetaldehyde: a chemical whose fortunes have changed  Wittcoff, Harold A.
Acetaldehyde is an example of a chemical whose use is declining because chemists have replaced it with superior chemicals.
Wittcoff, Harold A. J. Chem. Educ. 1983, 60, 1044.
Aldehydes / Ketones |
Applications of Chemistry
Diphenylbutadienes syntheses by means of the Wittig reaction: Experimental introduction to the use of phase transfer catalysis  Gillois, J.; Guillerm, G.; Stephen, E.; Vo-Quang, L.
Intended as a project carried out by students at the end of introductory organic chemistry.
Gillois, J.; Guillerm, G.; Stephen, E.; Vo-Quang, L. J. Chem. Educ. 1980, 57, 161.
Synthesis |
Catalysis |
Alkenes |
Aldehydes / Ketones |
Stereochemistry
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Lipids
Favorskii rearrangement in bridged polycyclic compounds  Chenier, Philip J.
Favorskii rearrangement in bridged polycyclic compounds: This can be classified as an intramolecular rearrangement from carbon to carbon, involving a migrating group Z moving without its electrons from migrating origin A to an electron-rich terminus B.
Chenier, Philip J. J. Chem. Educ. 1978, 55, 286.
Mechanisms of Reactions |
Carboxylic Acids |
Aldehydes / Ketones |
Aromatic Compounds
Illustrating gas chromatography and mass spectrometry. An undergraduate experiment  Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken
One lab period is used to separate and collect the components of a ketone mixture; the second lab period is used to explain and demonstrate the MS instrumentation and the interpretation of ketone spectra; and in part three the spectra of the separated ketones are analyzed by individual students.
Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken J. Chem. Educ. 1975, 52, 535.
Gas Chromatography |
Mass Spectrometry |
Aldehydes / Ketones
The photoisomerization of cyclic ketones: An experiment in organic chemistry  Haas, J. W., Jr.
This experiment deals with parameters such as the nature of the excited state, effect of triplet quenchers on product formation, chemical structure and reaction rate and quantum yield when cyclopentanone and cyclohexanone are irradiated at 254nm. These cyclic ketones provide a variety of photolysis information in a short time span, are conveniently analyzed by gas chromatography, and are readily available at the requisite levels of purity.
Haas, J. W., Jr. J. Chem. Educ. 1974, 51, 346.
Aldehydes / Ketones |
Aromatic Compounds |
Photochemistry |
Diastereomers |
Gas Chromatography
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure