TIGER

Journal Articles: 15 results
Synthesis Explorer: A Chemical Reaction Tutorial System for Organic Synthesis Design and Mechanism Prediction  Jonathan H. Chen and Pierre Baldi
Synthesis Explorer is an interactive tutorial system for organic chemistry that enables students to learn chemical reactions in ways previously unrealized. Pedagogical experiments in undergraduate classes at UC Irvine indicate that the system can improve average student examination performance by ~10%.
Chen, Jonathan H.; Baldi, Pierre. J. Chem. Educ. 2008, 85, 1699.
Mechanisms of Reactions |
Reactions |
Synthesis
Keeping Your Students Awake: Facile Microscale Synthesis of Modafinil, a Modern Anti-Narcoleptic Drug  Evangelos Aktoudianakis, Rui Jun Lin, and Andrew P. Dicks
Describes the microscale preparation of modafinil, a pharmaceutical recently approved for the treatment of narcolepsy, by a sulfide oxidation reaction. An unusual feature of modafinil is the presence of a chiral sulfoxide functionality where a sulfur atom acts as a stereocenter, demonstrating that atoms other than carbon can act as centers of chirality.
Aktoudianakis, Evangelos; Lin, Rui Jun; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 1832.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Synthesis |
Mechanisms of Reactions |
IR Spectroscopy |
NMR Spectroscopy |
Microscale Lab |
Stereochemistry
Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions  Kendrew K. W. Mak, Y. M. Lai, and Yuk-Hong Siu
Peroxy acids and alkaline H2O2 are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with a,¬Ě-unsaturated carbonyl compounds. The selectivity of these two reagents on carvone, a naturally occurring compound that contains both types of C=C bonds, is investigated.
Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong. J. Chem. Educ. 2006, 83, 1058.
Alkenes |
Chromatography |
Epoxides |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Mechanisms of Reactions
Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes  William D. Sharpless, Peng Wu, Trond Vidar Hansen, and James G. Lindberg
In keeping with the defining aspects of click chemistry, this reaction is high-yielding, requires no chromatography, is easily monitored by TLC, and displays distinct peaks in both IR and 1H-NMR. Virtually all products precipitate, and with just a few different starting blocks, every student, or pair of lab partners, can produce a unique "clicked" compound.
Sharpless, William D.; Wu, Peng; Hansen, Trond Vidar; Lindberg, James G. J. Chem. Educ. 2005, 82, 1833.
Catalysis |
Heterocycles |
Alkynes |
IR Spectroscopy |
NMR Spectroscopy |
Reactions |
Thin Layer Chromatography |
Synthesis
Conversion of an Aziridine to an Oxazolidinone Using a Salt and Carbon Dioxide in Water  Justin R. Wallace, Deborah L. Lieberman, Matthew T. Hancock, and Allan R. Pinhas
An undergraduate laboratory experiment that allows for optimization of experimental reaction conditions for the conversion of a readily-available aziridine to the corresponding oxazolidinone using only carbon dioxide and a salt in water is discussed. A variety of salts were used to determine their effect on the reaction. In all cases, either no reaction occurred or a high yield of product was obtained. Ring opening of the less substituted carbon¬Ěnitrogen bond predominates. This experiment allows students to optimize reaction conditions to obtain predominantly one of two regioisomers.
Wallace, Justin R.; Lieberman, Deborah L.; Hancock, Matthew T.; Pinhas, Allan R. J. Chem. Educ. 2005, 82, 1229.
Heterocycles |
Synthesis |
Aqueous Solution Chemistry |
Constitutional Isomers |
Mechanisms of Reactions |
NMR Spectroscopy |
Quantitative Analysis
Simple Epoxide Formation for the Organic Laboratory Using Oxone  William C. Broshears, John J. Esteb, Jeremy Richter, and Anne M. Wilson
This experiment demonstrates a simple synthesis of an epoxide and formation of a secondary oxidizing agent.
Broshears, William C.; Esteb, John J.; Richter, Jeremy; Wilson, Anne M. J. Chem. Educ. 2004, 81, 1018.
Oxidation / Reduction |
Synthesis
Epoxide Reactions  Thomas Bertolini
Puzzle involving epoxide reactions.
Bertolini, Thomas. J. Chem. Educ. 2002, 79, 828.
Synthesis |
Epoxides |
Ethers
Diastereoselective Synthesis of a Strawberry Flavoring Agent by Epoxidation of Ethyl trans-b-Methylcinnamate  Gayle J. Pageau, Rodwell Mabaera, Kathryn M. Kosuda, Tamara A. Sebelius, Ali H. Ghaffari, Kenneth A. Kearns, Jean P. McIntyre, Tina M. Beachy, and Dasan M. Thamattoor
Synthesis of the "strawberry aldehyde" epoxide, a well-known food and perfume additive.
Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M. J. Chem. Educ. 2002, 79, 96.
Molecular Modeling |
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Epoxides |
Consumer Chemistry |
Food Science
Synthesis and Use of Jacobsen's Catalyst: Enantioselective Epoxidation in the Introductory Organic Laboratory  John Hanson
Laboratory series to introduce students to an important synthetic method and many common techniques used in running reactions, purifying products, and characterizing compounds.
Hanson, John. J. Chem. Educ. 2001, 78, 1266.
Catalysis |
Chirality / Optical Activity |
Synthesis |
Organometallics |
Stereochemistry |
Epoxides |
Enantiomers |
Aromatic Compounds
Epoxide Chemistry: Guided Inquiry Experiment Emphasizing Structure Determination and Mechanism  H. G. Krishnamurty, Niveta Jain, and Kiran Samby
An operationally simple three-step synthesis of an a-hydroxy acid based on epoxide chemistry. The focus of the experiment is on the preparation of the chalcone epoxide and its reaction with hot alcoholic alkali. The experiment leads to an unpredicted reaction product.
Krishnamurty, H. G.; Jain, Niveta; Samby, Kiran. J. Chem. Educ. 2000, 77, 511.
Epoxides |
Molecular Properties / Structure |
Mechanisms of Reactions |
Synthesis
Grignard Reaction of an Epoxide: A Mechanistic Study  James A. Ciaccio, Sabrina Volpi, Ransford Clarke
Unlike most undergraduate Grignard experiments which are performed merely for the sake of illustrating a textbook reaction, this Grignard synthesis is performed to probe the reactivity of styrene oxide. Students are required to analyze their products by TLC and NMR spectroscopy (instead of just submitting them for a grade) in order to obtain the data necessary for making mechanistic conclusions.
Ciaccio, James A.; Volpi, Sabrina; Clarke, Ransford. J. Chem. Educ. 1996, 73, 1196.
Grignard Reagents |
Epoxides |
Thin Layer Chromatography |
NMR Spectroscopy |
Synthesis
Diastereospecific Synthesis of an Epoxide: An Introductory Experiment in Organic Synthetic and Mechanistic Chemistry  James A. Ciaccio
A two-step epoxide synthesis that can be presented to students in the form of two mechanistic "puzzles" that probe the stereoselectivity of two important reactions: halohydrin formation from alkenes and epoxide formation via intramolecular Williamson ether synthesis.
Ciaccio, James A. J. Chem. Educ. 1995, 72, 1037.
Stereochemistry |
Molecular Properties / Structure |
Mechanisms of Reactions |
Synthesis |
Epoxides |
Alkenes
The AC Rule: An Algorithm for Organic Reactions  Edgar F. Kiefer
Algorithm for predicting organic reaction mechanisms.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 906.
Mechanisms of Reactions |
Synthesis |
Reactions
Disconnect by the numbers: A beginner's guide to synthesis  Smith, Michael B.
A protocol for planning organic syntheses using the disconnection method.
Smith, Michael B. J. Chem. Educ. 1990, 67, 848.
Synthesis |
Mechanisms of Reactions
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Lipids