TIGER

Other Resources: 11 results
Kinetica; An Excel program to Stimulate or Analyze Kinetic Data  Leonel Vera, Pedro Ortega, Miguel Guzmán
The Excel spreadsheet Kinetica both simulates and analyzes kinetic data for simple rate equations of the form: - d[A]/dt = k [A]^n Instructors or students can generate simulated kinetic data using parameters they specify, or using parameters randomized by Kinetica. The data set that is generated may then be exported for use in exercises, homework, and exams, or may be analyzed directly within Kinetica. A kinetics data set may also be imported from an external source into Kinetica for analysis.
Kinetics
An Excel Program to Study First-Order Kinetics  Ken Muranaka
User data can be analyzed to determine what parameter values of the first order rate expression give the closest fit, or data can be generated using user-input values of the rate parameters and random noise levels. Statistical characterizations such as confidence limits and variance are calculated.
Kinetics
ChemPaths 104 F Feb 18  John W. Moore
Today in Chem 104: * Lecture: Rates of Reaction * Reading: Kotz: Ch. 15, Sec. 1-2 Moore, Ch 13, Sec. 1-2 * Homework #5 due by 11:55 pm F Feb 26 * Excel Assignment due at first discussion section next week (week of Feb. 21)
Kinetics
Stereochemistry Tutorial  Nicola Burrmann
Master the concepts organic stereochemistry with this interactive tutorial. It includes definitions, different three dimensional representations, assigning priorities to stereocenters, and determining the stereochemical relationship between molecules. Each section is followed by a question set that tests knowledge and understanding.
Stereochemistry |
Chirality / Optical Activity
The Rate of Reaction in Everyday Life  Tom Angsten
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Kinetics |
Metabolism
The Rate of Reaction  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Catalysis |
Kinetics
Mechanism-Based Kinetics Simulator  Robert M. Hanson
Simulate the kinetics of a reaction based on its mechanism using JavaScript. The idea is to write a mechanism and, based on that, follow the course of concentrations or rates of change in concentration of reactants, catalysts, intermediates, and products over time.
Kinetics |
Catalysis |
Mechanisms of Reactions
ChemPaths 104 M Feb 21  John W. Moore
Today in Chem 104: * Lecture: Rate Laws * Reading: Kotz:, Ch. 15, Sec. 3-4 Moore, Ch. 13, Sec. 3-5 * Homework #5 due by 11:55 pm F Feb 25 * Excel assignment due in first discussion section this week * Quiz 4 in second discussoin section
Kinetics |
Rate Law
The Rate Equation  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Kinetics |
Rate Law
Mage; A Tool for Developing Interactive Instructional Graphics  Stephen F. Pavkovic
Mage is a graphics program especially well suited for visualizing three-dimensional structures of proteins and other macromolecules. It is an important tool for biochemists and finds many applications in biochemistry courses. We utilize Mage to create interactive instructional graphics of potential use in a wider range of undergraduate chemistry courses, and present some of those applications here.
Crystals / Crystallography |
Group Theory / Symmetry |
VSEPR Theory |
Molecular Properties / Structure |
Stereochemistry |
Proteins / Peptides
Connected Chemistry  Mike Stieff
Connected Chemistry, a novel learning environment for teaching chemistry, is appropriate for use in both high school and undergraduate chemistry classrooms. Connected Chemistry comprises several molecular simulations designed to enable instructors to teach chemistry using the perspective of emergent phenomena. That is, it allows students to see observed macro-level chemical phenomena, like many other scientific phenomena, as resultant from the interactions of many individual agents on a micro-level. This perspective is especially appropriate to the study of chemistry where the interactions between multitudes of molecules on the atomic level give rise to the macro-level concepts that students study in the classroom. Connected Chemistry comprises molecular simulations embedded in the NetLogo modeling software (1). The collection contains several predesigned simulations of closed chemical systems to teach specific chemistry concepts. Currently, Connected Chemistry contains models for teaching Brønsted Lowry acid base theory, enzyme kinetics, radical polymerization, buffer chemistry, kinetics, chemical equilibrium, and crystallization. Instructors and students can individually tailor the predesigned simulations or generate new simulations as they are needed in the context of a particular lesson, classroom, or department.
Acids / Bases |
Gases |
Kinetics |
Nuclear / Radiochemistry |
pH |
Titration / Volumetric Analysis |
Polymerization |
Equilibrium |
Catalysis