TIGER

Journal Articles: 23 results
The Iodochlorination of Styrene: An Experiment That Makes a Difference  R. Gary Amiet and Sylvia Urban
This purpose of this laboratory exercise is to determine the various substitution and elimination products generated in the iodochlorination of styrene and their relative proportions through the application of mechanistic principles and a basic knowledge of GCMS and NMR.
Amiet, R. Gary; Urban, Sylvia. J. Chem. Educ. 2008, 85, 962.
Alkenes |
Constitutional Isomers |
Gas Chromatography |
Instrumental Methods |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Synthesis |
Student-Centered Learning
Pyrolysis of Aryl Sulfonate Esters in the Absence of Solvent: E1 or E2? A Puzzle for the Organic Laboratory  John J. Nash, Marnie A. Leininger, and Kurt Keyes
An aryl sulfonate ester is synthesized and then pyrolyzed at reduced pressure. The volatile products are analyzed using gas chromatography to determine whether the thermal decomposition occurs via an E1 or E2 mechanism.
Nash, John J.; Leininger, Marnie A.; Keyes, Kurt . J. Chem. Educ. 2008, 85, 552.
Alkenes |
Carbocations |
Elimination Reactions |
Gas Chromatography |
Mechanisms of Reactions |
Synthesis
Rapid and Stereoselective Conversion of a trans-Cinnamic Acid to a β-Bromostyrene  Thomas A. Evans
The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of trans-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. This guided-inquiry experiment links reactivity, stereochemistry, and mechanism in electrophilic addition reactions of alkenes and in E1 and E2 elimination reactions that form alkenes.
Evans, Thomas A. J. Chem. Educ. 2006, 83, 1062.
Alkenes |
Carbocations |
Gas Chromatography |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Stereochemistry
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the HartreeFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
The Substitution–Elimination Mechanistic Disc Method  Paul T. Buonora and Yu Jin Lim
In this manuscript a mnemonic device designed to facilitate presentation of the competing SN1, SN2, E1, and E2 mechanisms is presented.
Buonora, Paul T.; Lim, Yu Jin. J. Chem. Educ. 2004, 81, 368.
Mechanisms of Reactions |
Elimination Reactions |
Nucleophilic Substitution
The Study of Elimination Reactions Using Gas Chromatography: An Experiment for the Undergraduate Organic Laboratory  Devin Latimer
This article describes an investigation of elimination reactions of alkyl halides. 1-Bromopentane or 2-bromopentane are reacted with either sodium ethoxide or potassium tert-butoxide. Gas chromatography is used to monitor the relative amounts of 1-pentene, (E)-2-pentene, and (Z)-2-pentene produced.
Latimer, Devin. J. Chem. Educ. 2003, 80, 1183.
Chromatography |
Instrumental Methods |
Synthesis |
Gas Chromatography |
Elimination Reactions |
Mechanisms of Reactions |
Alkenes |
Stereochemistry
Preparation of a D-Glucose-Derived Alkene. An E2 Reaction for the Undergraduate Organic Chemistry Laboratory  Peter Norris and Andrew Fluxe
Synthesis of four carbohydrate derivatives that highlight techniques such as inert atmosphere work, rotary evaporators, and flash column chromatography.
Norris, Peter; Fluxe, Andrew. J. Chem. Educ. 2001, 78, 1676.
Carbohydrates |
NMR Spectroscopy |
Synthesis |
Alkenes |
Elimination Reactions |
Chromatography
The Discovery-Oriented Approach to Organic Chemistry. 5. Stereochemistry of E2 Elimination: Elimination of cis- and trans-2-Methylcyclohexyl Tosylate  Marcus E. Cabay, Brad J. Ettlie, Adam J. Tuite, Kurt A. Welday, and Ram S. Mohan
A discovery-oriented lab that illustrates the stereochemistry of the E2 elimination reaction and is a good exercise in 1H NMR spectroscopy. The added element of discovery insures that student interest and enthusiasm are retained.
Cabay, Marcus E.; Ettlie, Brad J.; Tuite, Adam J.; Welday, Kurt A.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 79.
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Elimination Reactions |
Reactions |
Alkenes
Molecular Orbital Animations for Organic Chemistry  Steven A. Fleming, Greg R. Hart, and Paul B. Savage
Introduces the application of highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) in animated form.
Fleming, Steven A.; Hart, Greg R.; Savage, Paul B. J. Chem. Educ. 2000, 77, 790.
MO Theory |
Molecular Modeling |
Mathematics / Symbolic Mathematics |
Mechanisms of Reactions |
Electrophilic Substitution |
Nucleophilic Substitution
Chart for Deciding Mechanism for Reaction of Alkyl Halide with Nucleophile/Base  McClelland, Bruce W.
The decision chart offered here is based upon the well-known and accepted characteristics of the reaction system mechanisms described in typical introductory organic chemistry textbooks.
McClelland, Bruce W. J. Chem. Educ. 1994, 71, 1047.
Mechanisms of Reactions |
Nucleophilic Substitution
The Dehydration of 2-Methylcyclohexanol Revisited: The Evelyn Effect  Todd, David
Modification to an earlier procedure that allows students to observe the results of a hydride shift mechanism.
Todd, David J. Chem. Educ. 1994, 71, 440.
Alcohols |
Mechanisms of Reactions |
Gas Chromatography |
Alkenes |
Elimination Reactions
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Microscale elimination reactions: Experiments for organic chemistry using the small scale approach  Gilow, Helmuth M.
Procedure illustrating E1 and E2 reactions.
Gilow, Helmuth M. J. Chem. Educ. 1992, 69, A265.
Microscale Lab |
Reactions |
Elimination Reactions |
Alcohols |
Alkenes |
Catalysis
Decarboxylative elimination of 2,3-dibromo-3-phenylpropanoic acid to E or Z 1-bromo-2-phenylethylene (Beta-Bromostyrene): An experiment illustrating solvent effect on the stereochemical course of a reaction  Mestdagh, Helene; Puechberty, Anne
An experiment illustrating solvent effect on the stereochemical course of a reaction.
Mestdagh, Helene; Puechberty, Anne J. Chem. Educ. 1991, 68, 515.
Elimination Reactions |
Alkenes |
Stereochemistry |
Solutions / Solvents
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
A dynamic carbon model capable of showing changes in hybridization  Fountain, K. R.
It is possible to construct a simple dynamic model of a carbon atom that demonstrates the Walden inversion, the SN1 reaction, and when joined with another units like itself demonstrates the full spectrum of elimination reactions.
Fountain, K. R. J. Chem. Educ. 1979, 56, 379.
Molecular Modeling |
Nucleophilic Substitution |
Elimination Reactions
Phase transfer catalysis. Part II: Synthetic applications  Gokel, George W.; Weber, William P.
In this month's continuation of an article, the authors have catalogued a number of illustrative examples so that the range of applicability of phase transfer catalysis will be.
Gokel, George W.; Weber, William P. J. Chem. Educ. 1978, 55, 429.
Phases / Phase Transitions / Diagrams |
Catalysis |
Aromatic Compounds |
Organometallics |
Nucleophilic Substitution |
Synthesis |
Esters |
Oxidation / Reduction |
Alkylation
A molecular model for SN2 reactions  Newman, Melvin S.
Plan for a homemade mechanical model designed to demonstrate many of the features of SN2 reactions.
Newman, Melvin S. J. Chem. Educ. 1975, 52, 462.
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure |
Nucleophilic Substitution |
Mechanisms of Reactions |
Reactions
Reaction mechanisms in organic chemistry. Concerted reactions  Caserio, Marjorie C.
Examines displacement and elimination, cyclization, and rearrangement reactions, as well as theoretical considerations and generalized selection rules.
Caserio, Marjorie C. J. Chem. Educ. 1971, 48, 782.
Mechanisms of Reactions |
Reactions |
Nucleophilic Substitution |
Elimination Reactions
Donor-acceptor interactions in organic chemistry  Sunderwirth, S. G.
The purpose of this article is to aid teachers in making even more effective use of theoretical considerations in teaching organic chemistry; the primary objective is to emphasize the underlying principles that are common to the following four basic types of reactions: substitution, addition, elimination, and rearrangement.
Sunderwirth, S. G. J. Chem. Educ. 1970, 47, 728.
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions |
Nucleophilic Substitution
Substitution products in the Hofmann elimination  Baumgarten, Ronald J.
Textbooks often state or imply that alkenes are the only products formed when tetra- alkylammonium hydroxides are heated.
Baumgarten, Ronald J. J. Chem. Educ. 1968, 45, 122.
Alkenes