TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
2 Videos
20 Assessment Questions
8 Molecular Structures
9 Journal Articles
5 Other Resources
Videos: 2 results
Reactions: Acetylene  
Preparation of acetylene and the reaction of chlorine with acetylene are demonstrated. An antique carbide lamp is also demonstrated.
Alkynes |
Reactions |
Water / Water Chemistry |
Oxidation / Reduction
Reactions involving Acetylene  
Some movies relating to acetylene are presented.
Alkynes |
Reactions |
Water / Water Chemistry |
Applications of Chemistry
Assessment Questions: First 3 results
Synthesis (11 Variations)
A collection of 11 assessment questions about Synthesis
Aldehydes / Ketones |
Synthesis |
Esters |
Oxidation / Reduction |
Alkynes |
Organometallics |
Alcohols |
Electrophilic Substitution
Epoxides (5 Variations)
A collection of 5 assessment questions about Epoxides
Epoxides |
Reactions |
Oxidation / Reduction |
Synthesis
Enamines (6 Variations)
A collection of 6 assessment questions about Enamines
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Synthesis
View all 20 results
Molecular Structures: First 3 results
Boron Hydride BH3

3D Structure

Link to PubChem

VSEPR Theory |
Gases |
Metalloids / Semimetals |
Synthesis

Dichloro Acetylene C2Cl2

3D Structure

Link to PubChem

Alkynes

Ethyne HCCH

3D Structure

Link to PubChem

Alkynes

View all 8 results
Journal Articles: First 3 results.
Pedagogies:
Hydration of Acetylene: A 125th Anniversary  Dmitry A. Ponomarev and Sergey M. Shevchenko
The discovery the hydration of alkynes catalyzed by mercury ions by Mikhail Kucherov made possible industrial production of acetaldehyde from acetylene and had a profound effect on the development of industrial chemistry in the 1920th centuries.
Ponomarev, Dmitry A.; Shevchenko, Sergey M. J. Chem. Educ. 2007, 84, 1725.
Addition Reactions |
Aldehydes / Ketones |
Alkynes |
Catalysis |
Industrial Chemistry |
Reactions
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
View all 9 articles
Other Resources: First 3 results
Percent Yield  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Synthesis
Molecular Models of Products and Reactants from Suzuki and Heck Syntheses  William F. Coleman
Our Featured Molecules this month come from the paper by Evangelos Aktoudianakis, Elton Chan, Amanda R. Edward, Isabel Jarosz, Vicki Lee, Leo Mui, Sonya S. Thatipamala, and Andrew P. Dicks (1), in which they describe the synthesis of 4-phenylphenol using an aqueous-based Suzuki reaction. The authors describe the various ways in which this reaction addresses concerns of green chemistry, and point out that their product bears structural similarity to two non-steroidal anti-inflammatory drugs (NSAIDs), felbinac and diflunisal. A number of molecules from this paper and its online supplemental material have been added to the Featured Molecules collection. Students will first notice that the aromatic rings in the molecules based on a biphenyl backbone are non-planar, as is the case in biphenyl. If they look carefully at diflunisal, they will notice that the carbon atoms are in a different chemical environment. One way in which to see the effect of these differing environments is to examine the effect of atom charge on the energies of the carbon 1s orbitals. Figure 1 shows this effect using charges and energies from an HF/631-G(d) calculation. A reasonable question to ask students would be to assign each of the data points to the appropriate carbon atom. As an extension of this exercise students could produce similar plots using different computational schemes. Are the results the same; are they parallel. This would be a useful problem when dealing with the tricky question of exactly what is meant by atom charge in electronic structure calculations. Students with more expertise in organic chemistry could explore extending the synthesis of 4-phenylphenol to produce more complex bi- and polyphenyl-based drugs. This may well be the first time that they have seen coupling reactions such as the Suzuki and Heck reactions. Students in introductory and non-science-major courses might well find the NSAIDs to be an interesting group of molecules, and could be asked to find information on the variety of molecules that display the anti-inflammatory properties associated with NSAIDs. Do they find structural similarities? Are there various classes of NSAIDs? Are they familiar with any of these molecules? Have they taken any NSAIDs? If so, for what reason? Is there any controversy about any of the NSAIDs? As with all of the molecules in the Featured Molecules collections, those added this month provide us with a number of ways of showing students the practical relevance of what they sometime see only as lines on a page. Molecules do matter.
Synthesis
Creative Chemistry  
Volume 04, issue 15 of a series of leaflets covering subjects of interest to students of elementary chemistry distributed in 1929 - 1932.
Applications of Chemistry |
Synthesis
View all 5 results