TIGER

Journal Articles: 96 results
Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems  Valerio Magnasco
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H2+, H2, He2+, and He2 gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region.
Magnasco, Valerio. J. Chem. Educ. 2008, 85, 1686.
Atomic Properties / Structure |
Computational Chemistry |
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Valence Bond Theory
Computational Analysis of Stereospecificity in the Cope Rearrangement  Laura Glish and Timothy W. Hanks
Experimental product distributions from the Cope rearrangement of disubstituted 1,5-hexadienes can be readily understood by computer modeling of the various possible transitions states. Visual analysis of these geometries allow students to interpret the computational results by analogy to the familiar chair and boat conformations of substituted cyclohexanes.
Glish, Laura; Hanks, Timothy W. J. Chem. Educ. 2007, 84, 2001.
Alkenes |
Computational Chemistry |
Conformational Analysis |
Medicinal Chemistry |
MO Theory |
Molecular Modeling |
Mechanisms of Reactions
Introducing the Practical Aspects of Computational Chemistry to Undergraduate Chemistry Students  Jason K. Pearson
Presents a laboratory exercise in which students use traditional second-year concepts such as the rigid rotor and harmonic oscillator approximations in conjunction with Gaussian 03 to reinforce practical aspects of computational chemistry.
Pearson, Jason K. J. Chem. Educ. 2007, 84, 1323.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Getting the Weights of Lewis Structures out of Hückel Theory: Hückel–Lewis Configuration Interaction (HL-CI)  Stéphane Humbel
A method to obtain the weights of Lewis structures from Hckel calculations is presented and tested against established ab initio methods.
Humbel, Stéphane. J. Chem. Educ. 2007, 84, 1056.
Computational Chemistry |
Lewis Structures |
Theoretical Chemistry |
Quantum Chemistry |
Resonance Theory |
Valence Bond Theory
On the Role of d Orbital Hybridization in the Chemistry Curriculum  John Morrison Galbraith
The use of d-orbital hybridization to describe hypervalent molecules should be removed from the general chemistry curriculum. The case of bonding in sulfur hexaflouride can illustrate that no theory provides all the right answers all the time.
Galbraith, John Morrison. J. Chem. Educ. 2007, 84, 783.
Computational Chemistry |
MO Theory |
Valence Bond Theory
A Sequence of Linked Experiments, Suitable for Practical Courses of Inorganic, Organic, Computational Chemistry, and NMR Spectroscopy  Grigoriy A. Sereda
A sequence of investigations associated with the iodochlorination of styrene and 1-hexene is described. The sequence is flexible enough to be used in inorganic, organic, computational, and instrumental courses.
Sereda, Grigoriy A. J. Chem. Educ. 2006, 83, 931.
Alkenes |
Computational Chemistry |
Constitutional Isomers |
MO Theory |
NMR Spectroscopy |
Synthesis
Why the Lower-Energy Term of Singlet Dioxygen Has a Doubly Occupied π* Orbital  Terry S. Carlton
The singlet term of dioxygen with one doubly occupied p* orbital has lower energy than the singlet term with two singly occupied p* orbitals even though single occupancy is favored in the aufbau of atoms. A simple physical explanation based on orbital angular momentum explains this double occupancy.
Carlton, Terry S. J. Chem. Educ. 2006, 83, 477.
MO Theory |
Quantum Chemistry
Moving Beyond the Single Center—Ways To Reinforce Molecular Orbital Theory in an Inorganic Course  Marion E. Cass and William E. Hollingsworth
Rather than ending the discussion of molecular orbital (MO) theory in an inorganic chemistry course with molecules such as octahedral ML6 or square planar ML4, we suggest moving beyond the single-atom center to include the MO diagram of ethene (C2H4).
Cass, Marion E.; Hollingsworth, William E. J. Chem. Educ. 2004, 81, 997.
MO Theory |
Molecular Modeling
A Unified Approach to Electron Counting in Main-Group Clusters  John E. McGrady
A unified approach to electron counting in main-group cluster chemistry is presented, wherein the different classes, electron-rich, electron-precise, and electron-deficient, are viewed simply as different regions of a continuum defined by two variables, vertex count and valence electron count.
McGrady, John E. J. Chem. Educ. 2004, 81, 733.
Main-Group Elements |
MO Theory
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
The Excited States of Molecular Oxygen  David Tudela and Vicente Fernández
There is a mistake in the electronic structure of the first two excited states.
Tudela, David; Fernández, Vicente. J. Chem. Educ. 2003, 80, 1381.
MO Theory |
UV-Vis Spectroscopy
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory  Frazier Nyasulu, John Macklin, and William Cusworth III
Examination of the spectrum of liquid oxygen and testing several hypotheses to explain the pattern of spectral lines observed.
Nyasulu, Frazier; Macklin, John; Cusworth, William, III. J. Chem. Educ. 2002, 79, 356.
MO Theory |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Colorful Azulene and Its Equally Colorful Derivatives  Robert S. H. Liu
Analysis of azulene and related compounds for an explanation of their respective colors.
Liu, Robert S. H. J. Chem. Educ. 2002, 79, 183.
Atomic Properties / Structure |
MO Theory |
UV-Vis Spectroscopy |
Aromatic Compounds |
Alkenes
Structure and Bonding (by Jack Barrett)  Michael Laing
Tutorial chemistry text.
Laing, Michael. J. Chem. Educ. 2001, 78, 1600.
Molecular Properties / Structure |
MO Theory |
Atomic Properties / Structure |
Group Theory / Symmetry |
Covalent Bonding |
VSEPR Theory
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
Orbitals in Chemistry: A Modern Guide for Students
by Victor M. Gil
  David Hanson
Analysis of atomic and molecular orbitals.
Hanson, David. J. Chem. Educ. 2001, 78, 1184.
MO Theory |
Molecular Properties / Structure |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding
Have Orbitals Really Been Observed? (re J. Chem. Educ. 2000, 77, 1492-1494)  John C. H. Spence, M. O'Keefe, and J. M. Zuo
Clarification of work described in a previous article.
Spence, John C. H.; O'Keefe, M.; Zuo, J. M. J. Chem. Educ. 2001, 78, 877.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  David E. Lewis
Unoccupied orbitals as the major arbiters of reactivity have been long ignored in teaching introductory organic chemistry courses.
Lewis, David E. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  William B. Jensen
Past classifications related to the nine-category classification of organic electrophilic-nucleophilic reactions based on the bonding and symmetry characteristics of the reactants' frontier orbitals of the author.
Jensen, William B. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  William B. Jensen
Past classifications related to the nine-category classification of organic electrophilic-nucleophilic reactions based on the bonding and symmetry characteristics of the reactants' frontier orbitals of the author.
Jensen, William B. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Hybridization and Structural Properties
(re
J. Chem. Educ. 1998, 75, 888-890)  Victor M. S. Gil
Clarifying cause-effect relationships between orbital hybridization and structural properties.
Gil, Victor M. S. J. Chem. Educ. 2001, 78, 31.
MO Theory |
Instrumental Methods |
NMR Spectroscopy |
Molecular Properties / Structure
Hybridization and Structural Properties
(re
J. Chem. Educ. 1998, 75, 888-890)  Victor M. S. Gil
Clarifying cause-effect relationships between orbital hybridization and structural properties.
Gil, Victor M. S. J. Chem. Educ. 2001, 78, 31.
MO Theory |
Instrumental Methods |
NMR Spectroscopy |
Molecular Properties / Structure
Have Orbitals Really Been Observed?  Eric R. Scerri
Recent reports claiming to have observed textbook d orbitals are analyzed and it is argued that what was observed indirectly, and not for the first time, was actually electron density. It is also suggested that the tendency to use the terms electron density and orbital to mean the same thing will give rise to confusion in chemical education.
Scerri, Eric R. J. Chem. Educ. 2000, 77, 1492.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Molecular Orbital Animations for Organic Chemistry  Steven A. Fleming, Greg R. Hart, and Paul B. Savage
Introduces the application of highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) in animated form.
Fleming, Steven A.; Hart, Greg R.; Savage, Paul B. J. Chem. Educ. 2000, 77, 790.
MO Theory |
Molecular Modeling |
Mathematics / Symbolic Mathematics |
Mechanisms of Reactions |
Electrophilic Substitution |
Nucleophilic Substitution
Reply to Coulombic Models in Chemical Bonding  Smith, Derek W.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Smith, Derek W. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Coulombic Models in Chemical Bonding  Sacks, Lawrence J.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Sacks, Lawrence J. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Pericyclic Reactions: FMO Approach-Abstract of Issue 9904M  Albert W. M. Lee, C. T. So, C. L. Chan, and Y. K. Wu
Pericyclic Reactions: FMO Approach is a program for Macintosh computers in which the frontier molecular orbital approaches to electrocyclic and cycloaddition reactions are animated. The bonding or antibonding interactions of the frontier molecular orbital(s) determine whether the reactions are thermally or photochemically allowed or forbidden.
Lee, Albert W. M.; So, C. T.; Chan, C. L.; Wu, Y. K. J. Chem. Educ. 1999, 76, 720.
MO Theory |
Mechanisms of Reactions
A Simple Qualitative Molecular-Orbital/Valence-Bond Description of the Bonding in Main Group "Hypervalent" Molecules  Owen J. Curnow
A multicenter valence-bond/molecular-orbital bonding scheme for main group "hypervalent" molecules is proposed which extends the 3-center-4-electron (3c-4e) bonding model of Rundle and Pimentel to include 4c-6e, 5c-8e, and 6c-10e bonds. This model allows the determination of bond orders and a rationalisation of bond distances.
Curnow, Owen J. J. Chem. Educ. 1998, 75, 910.
Covalent Bonding |
MO Theory |
Theoretical Chemistry |
Main-Group Elements |
Molecular Properties / Structure
Valency  Peter G. Nelson
The concept of valency is refined and developed. Three types of valency are distinguished : primary or classical, coordinate, and nonclassical. The first relates to simple compounds and to the components of multiple ones, the second to coordination compounds, and the third to transition-metal carbonyls and similar species. Each type is defined, evaluated, and applied to the prediction of the atomic composition of compounds.
Nelson, Peter G. J. Chem. Educ. 1997, 74, 465.
Valence Bond Theory |
Coordination Compounds |
Oxidation / Reduction
The Use of MO Calculations to Teach Students Some Concepts of Aromatic Substitution Reactions  Petrus Zeegers
The experiments described here are an attempt to help students unify the theoretical and practical aspects of their studies in organic chemistry. Simple aromatic compounds (4-X-phenols) have been used to illustrate the relationship between theoretical molecular orbital calculations and an industrially useful multi step organic synthesis.
Zeegers, Petrus. J. Chem. Educ. 1997, 74, 299.
MO Theory |
Aromatic Compounds |
Phenols
Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach  Chariklia Sotiriou-Leventis, Samir B. Hanna, and Nicholas Leventis
The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds.
Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas. J. Chem. Educ. 1996, 73, 295.
Alkenes |
MO Theory
Huckel Calculations using Mathematica  Healy, Eamonn F.
Using Mathematica software to simplify and elucidate the application of the Huckel theory in the calculation of molecular energies and orbital coefficients.
Healy, Eamonn F. J. Chem. Educ. 1995, 72, A120.
MO Theory |
Mathematics / Symbolic Mathematics
The Conformational Behavior of n-Pentane: A Molecular Mechanics and Molecular Dynamics Experiment  Mencarelli, Paolo
174. Use of HyperChem to investigate the conformational behavior of n-pentane.
Mencarelli, Paolo J. Chem. Educ. 1995, 72, 511.
MO Theory |
Chirality / Optical Activity |
Molecular Properties / Structure |
Conformational Analysis |
Alkanes / Cycloalkanes |
Molecular Mechanics / Dynamics |
Molecular Modeling
Non-Koopmans' Molecules  Duke, Brian J.; O'Leary, Brian
Analysis of the validity of the molecular orbital description of the ionization process.
Duke, Brian J.; O'Leary, Brian J. Chem. Educ. 1995, 72, 501.
MO Theory |
Molecular Properties / Structure
An Attention-Getting Model for Atomic Orbitals  Kiefer, Edgar F.
Tapping a spoon on a coffee mug to illustrate the circular orbitals of benzene.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 500.
MO Theory |
Aromatic Compounds
The Lewis Structure: An Expanded Perspective  Reed, James L.
A simple bridge between the molecular orbital and valence bond models.
Reed, James L. J. Chem. Educ. 1994, 71, 98.
Lewis Structures |
Covalent Bonding |
MO Theory |
Molecular Properties / Structure
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
The generation of 2-D and 3-D electron density maps using high performance computing technology   Denniston, Michael L.
Describes a method for producing computer-generated images that show the buildup of electron density at any position within a molecular structure.
Denniston, Michael L. J. Chem. Educ. 1993, 70, A76.
MO Theory |
Quantum Chemistry
Spectroscopic Analysis of Semiconductor Colloids: An Experiment in Materials Science for the Advanced Inorganic or Physical Chemistry Laboratory  Chandler, Robin R.; Bigham, Shelli R.; Coffer, Jeffery L.
While the study of clusters and the materials derived from them is rapidly expanding, little attention is paid to them in undergraduate chemistry. The authors describe an appropriate undergraduate activity.
Chandler, Robin R.; Bigham, Shelli R.; Coffer, Jeffery L. J. Chem. Educ. 1993, 70, A7.
Colloids |
Semiconductors |
MO Theory |
Metalloids / Semimetals |
Solid State Chemistry |
UV-Vis Spectroscopy |
Micelles |
Metals |
Materials Science |
Metallic Bonding
Photodegradation of methylene blue: Using solar light and semiconductor (TiO2)  Nogueira, Raquel F. P.; Jardim, Wilson F.
An experiment that can be used to introduce or explore concepts such as photochemistry, semiconductors, and kinetics.
Nogueira, Raquel F. P.; Jardim, Wilson F. J. Chem. Educ. 1993, 70, 861.
Semiconductors |
Photochemistry |
Kinetics |
Catalysis |
MO Theory
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
The Caltech chemistry animation project   Lewis, Nathan S.
Animations are being produced on subjects such as: atomic and molecular orbitals, lattices, VSPER, nucleophilic substitution, stereochemistry, sigma and pi bonding, and many more.
Lewis, Nathan S. J. Chem. Educ. 1993, 70, 739.
Stereochemistry |
Atomic Properties / Structure |
Molecular Modeling |
MO Theory |
Crystals / Crystallography
The nature of the chemical bond-Once more (1).  Edmiston, Clyde.
The original article is a classic case of incorrect conclusions drawn from largely correct facts.
Edmiston, Clyde. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry |
MO Theory
Semitopological representation of electronic structure of complex boron hydrides and ions using styx numbers  Dikshit, S. K.; Singh, Ramsharan
The equations of balance for boron hydrides do not always give unequivocal answers, but do assist by limiting the structure considered.
Dikshit, S. K.; Singh, Ramsharan J. Chem. Educ. 1992, 69, 274.
Molecular Properties / Structure |
MO Theory
Higher order cycloaddition reactions of adamantyl isobenzofulvene and isobenzofuran: A microscale synthesis illustrating the involvement of highly reactive intermediates and a simple FMO treatment of their cycloaddition periselectivities  Russell, Richard A.; Longmore, Robert W.; Warrener, Ronald N.
The authors have developed an undergraduate laboratory experiment to illustrate a cycloaddition reaction using a simple mathematical approach.
Russell, Richard A.; Longmore, Robert W.; Warrener, Ronald N. J. Chem. Educ. 1992, 69, 164.
Microscale Lab |
Alkenes |
Synthesis |
MO Theory
The relative energies of molecular orbitals for second-row homonuclear diatomic molecules: The effect of s-p mixing  Haim, Albert
This paper attempts to point out an error usually committed when illustrating the molecular orbitals for earlier diatomic molecules (B-N) versus later ones (O and F).
Haim, Albert J. Chem. Educ. 1991, 68, 737.
MO Theory
There are no such things as orbitals-Act two!  Simons, Jack
What is the role of molecular orbital theory in chemistry instruction?
Simons, Jack J. Chem. Educ. 1991, 68, 131.
MO Theory |
Atomic Properties / Structure |
Quantum Chemistry
Superoxide dismutase and the Briggs-Rauscher reaction  Franz, David A.
Oxygen-derived species provide chemistry teachers with excellent examples for discussion of molecular-orbital theory, bond order and reactivity, redox potentials, radical reactivity, disproportionation, and enzyme activity.
Franz, David A. J. Chem. Educ. 1991, 68, 57.
Enzymes |
Biophysical Chemistry |
MO Theory |
Oxidation / Reduction |
Covalent Bonding
Crystal field theory and the angular overlap model applied to hydrides of main group elements  Moore, E. A.
How crystal field theory and the angular overlap model can be applied to very simple molecules, the di- and trihydrides of main group elements, which can then be used to introduce such concepts bonding orbitals, MO diagrams, and Walsh diagrams.
Moore, E. A. J. Chem. Educ. 1990, 67, 657.
Crystal Field / Ligand Field Theory |
Main-Group Elements |
MO Theory
MO theory made visible  Mealli, Carlo; Proserpio, Davide M.
114. The authors present an automated package of programs to perform MO calculations and their graphical illustration.
Mealli, Carlo; Proserpio, Davide M. J. Chem. Educ. 1990, 67, 399.
MO Theory
Independent coordinates of molecular structures and group theory  Ermer, Otto
The author describes a simple and safe group theoretical method for the systematic evaluation of the number of independent structural parameters.
Ermer, Otto J. Chem. Educ. 1990, 67, 209.
MO Theory |
Molecular Properties / Structure
Molecular electronic terms and molecular orbital configurations  Mazo, R. M.
This paper answers the question, which molecular electronic terms can arise from a given electronic configuration?
Mazo, R. M. J. Chem. Educ. 1990, 67, 135.
MO Theory |
Atomic Properties / Structure |
Molecular Properties / Structure
Observation of paramagnetic property of oxygen by simple method - A simple experiment for college chemistry and physics courses   Shimada, Hiroshi; Yasuoka, Takashi; Mitsuzawa, Shunmei
The authors devised a demonstration in which a bubble of gaseous oxygen is used to demonstrate the paramagnetic property of oxygen rather than liquid oxygen.
Shimada, Hiroshi; Yasuoka, Takashi; Mitsuzawa, Shunmei J. Chem. Educ. 1990, 67, 63.
MO Theory |
Magnetic Properties
Huckel theory and photoelectron spectroscopy  von Nagy-Felsobuki, Ellak I.
HMO theory and photoelectron spectroscopy; HMO interpretation of the energetic shifts in the ultraviolet photoelectron spectroscopy of mono-substituted haloamines.
von Nagy-Felsobuki, Ellak I. J. Chem. Educ. 1989, 66, 821.
Spectroscopy |
MO Theory |
Computational Chemistry
ESR studies and HMO calculations on benzosemiquinone radical anions: A physical chemistry experiment  Beck, Rainer; Nibler, Joseph W.
For this laboratory study, several benzosemiquinone radical anions were chosen since they are long-lived and are easily made from inexpensive source materials. The effects of molecular symmetry and of different substituents attached to the aromatic ring system are also readily seen.
Beck, Rainer; Nibler, Joseph W. J. Chem. Educ. 1989, 66, 263.
Spectroscopy |
MO Theory |
Aromatic Compounds
Synthesis of azulene, a blue hydrocarbon  Lemal, David M.; Goldman, Glenn D.
A procedure of the synthesis of this simple, beautiful, and theoretically interesting compound with many unusual properties.
Lemal, David M.; Goldman, Glenn D. J. Chem. Educ. 1988, 65, 923.
MO Theory |
Aromatic Compounds |
Diastereomers |
Synthesis
Recent advances in the concept of hard and soft acids and bases  Pearson, Ralph G.
The hard / soft acids / bases principle has been justifiably criticized because of the lack of a precise definition of hardness and the inability to quantify this property; recent developments have overcome these objections, however.
Pearson, Ralph G. J. Chem. Educ. 1987, 64, 561.
Acids / Bases |
Coordination Compounds |
MO Theory |
Oxidation / Reduction
Electron spectroscopic methods in teaching  Allan, Michael
Presents several spectra in a format suitable for teaching applications with the intention of promoting the use of electron energy-loss spectroscopy in teaching the electronic structure of atoms and molecules at an elementary level.
Allan, Michael J. Chem. Educ. 1987, 64, 418.
Spectroscopy |
Quantum Chemistry |
Photochemistry |
Atomic Properties / Structure |
Molecular Properties / Structure |
MO Theory
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Fractional bond order  Li, Wai-Kee
Question designed to test the students' understanding of multicenter bonding and elementary molecular orbital theory.
Li, Wai-Kee J. Chem. Educ. 1985, 62, 605.
MO Theory
A simple method to determine the geometry of triatomic systems  Thuraisingham, R. A.; Epa, V. C.
A method based on the first-order perturbation theory applied to the extended Huckel method to determine the geometry of triatomic systems.
Thuraisingham, R. A.; Epa, V. C. J. Chem. Educ. 1985, 62, 486.
Molecular Properties / Structure |
VSEPR Theory |
MO Theory
Toward an organic chemist's periodic table  Hall, H. K., Jr.
An analogy between electron transfer reactions of the elements and those of organic molecules.
Hall, H. K., Jr. J. Chem. Educ. 1980, 57, 49.
MO Theory |
Reactions |
Mechanisms of Reactions
The perturbational MO method for saturated systems  Herndon, William C.
Outlines a molecular orbital approach to the problem of predicting and correlating bond dissociation energies in saturated hydrocarbons.
Herndon, William C. J. Chem. Educ. 1979, 56, 448.
MO Theory |
Alkanes / Cycloalkanes |
Free Radicals |
Mechanisms of Reactions
Assigning oxidation states to some metal dioxygen complexes of biological interest  Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred
Considers the bonding of dioxygen in metal-dioxygen complexes, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen.
Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred J. Chem. Educ. 1979, 56, 157.
Oxidation State |
Metals |
Covalent Bonding |
MO Theory
Project for problem-oriented undergraduate organic or integrated undergraduate laboratory  Silveira, Augustine, Jr.
This paper reports on an open-ended project which allows a great degree of flexibility in the laboratory. The project provided about a 6-week study for groups of 24 students each.
Silveira, Augustine, Jr. J. Chem. Educ. 1978, 55, 57.
Synthesis |
Undergraduate Research |
Spectroscopy |
Diastereomers |
Addition Reactions |
MO Theory |
Elimination Reactions |
Thermodynamics |
Kinetics
Novel pictorial approach to teaching MO concepts in polyatomic molecules  Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G.
Methods used in a one-quarter course to familiarize students with the general applicability of delocalized and localized molecular orbitals to polyatomic systems; includes examples of delocalized and localized molecular orbitals of XeF2, C3H3+, CH4, and CO2.
Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G. J. Chem. Educ. 1977, 54, 590.
MO Theory |
Atomic Properties / Structure
Where does resonance energy come from? A nonmathematical approach to the theory of aromaticity  Sardella, D. J.
In confronting the central issue of why aromatic systems are aromatic, the author provides a verbal application of perturbational molecular orbital theory.
Sardella, D. J. J. Chem. Educ. 1977, 54, 217.
Aromatic Compounds |
MO Theory
The LMO description of multiple bonding and multiple lone pairs  England, Walter
Examines localized molecular orbitals and the description of multiple bonds and lone pairs.
England, Walter J. Chem. Educ. 1975, 52, 427.
Covalent Bonding |
MO Theory
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
A simple demonstration model for molecular orbital theory  Druding, Leonard F.
Using two bar magnets and iron filings to demonstrate the formation of molecular bonding and anti-bonding orbitals.
Druding, Leonard F. J. Chem. Educ. 1972, 49, 617.
MO Theory
Models to illustrate orbital symmetry effects in organic reactions  Brown, Peter
From a pedagogic point of view, conservation of orbital symmetry is easily assimilated by students with a rudimentary knowledge of simple MO theory and of symmetry. The author has found in teaching over the past three years at both graduate and undergraduate levels that use of a simple set of orbital models as described in this article has enormous advantages as a visual aid in the construction and assignment of symmetry elements to the appropriate semi-localized Huckel-type MOs and in following their stereo chemical fate in concerned reactions.
Brown, Peter J. Chem. Educ. 1971, 48, 535.
Molecular Modeling |
MO Theory |
Group Theory / Symmetry
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Localized and delocalized molecular orbital description of methane  Bernett, William A.
The purpose of this article is to show that the relationship between localized and delocalized molecular orbitals can be easily demonstrated for the case of methane.
Bernett, William A. J. Chem. Educ. 1969, 46, 746.
Molecular Properties / Structure |
MO Theory
LTE. Normalization of MO's  Hecht, Charles E.
The author suggests that the cited computer program be modified to normalize molecular orbitals.
Hecht, Charles E. J. Chem. Educ. 1969, 46, 700.
MO Theory |
Molecular Properties / Structure
Fluid-flow simulation of molecular orbitals  Gymer, Roger G.
A simple device, the fluid mapper, is used for the simulation of molecular orbitals.
Gymer, Roger G. J. Chem. Educ. 1969, 46, 493.
MO Theory |
Molecular Modeling
Hybrid orbitals in molecular orbital theory  Cohen, Irwin; Del Bene, Janet
Reviews, for the nonspecialist, the basis of hybrid orbitals in terms of molecular orbital theory, to show how the chemical bond is most closely approximated in orbital theory, and to present some new orbital diagrams.
Cohen, Irwin; Del Bene, Janet J. Chem. Educ. 1969, 46, 487.
MO Theory |
Transition Elements
Simplified molecular orbital approach to inorganic stereochemistry  Gavin, R. M., Jr.
The purpose of this paper is to outline the simplest of the Huckel-type molecular orbital models for inorganic molecules and to explore the information on molecular geometry implicit in this model.
Gavin, R. M., Jr. J. Chem. Educ. 1969, 46, 413.
MO Theory |
Stereochemistry |
Molecular Properties / Structure |
VSEPR Theory
Increased-valence theory of valence  Harcourt, R. D.
Describes several "increased valence" formulas for molecular systems with one or more sets of pour electrons distributed among three atomic orbitals of three atoms.
Harcourt, R. D. J. Chem. Educ. 1968, 45, 779.
Atomic Properties / Structure |
Valence Bond Theory
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Teaching aromatic substitution: A molecular orbital approach  Meislich, Herbert
This paper presents a way of teaching aromatic substitution using the concepts of alternate polarity and electron delocalization through extended pi-bonding.
Meislich, Herbert J. Chem. Educ. 1967, 44, 153.
Aromatic Compounds |
MO Theory |
Nucleophilic Substitution |
Covalent Bonding |
Molecular Properties / Structure
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
Aromatic substitution  Duewell, H.
Reports on the use of the molecular orbit theory in a qualitative approach to the activation and orientation of substitution in aromatic systems.
Duewell, H. J. Chem. Educ. 1966, 43, 138.
Aromatic Compounds |
MO Theory |
Mechanisms of Reactions
Hybridization in the description of homonuclear diatomic molecules  George, John W.
Presents energy levels for B2 and C2 molecules using hybrid atomic orbitals.
George, John W. J. Chem. Educ. 1965, 42, 152.
Molecular Properties / Structure |
MO Theory
Atomic orbital molecular models  Martins, George
Atomic orbital molecular models are constructed using molded white expanded polystyrene in the form of spheres and teardrops.
Martins, George J. Chem. Educ. 1964, 41, 658.
Atomic Properties / Structure |
MO Theory
Rules for molecular orbital structures  Meislich, Herbert
In view of the fact that molecular orbital theory makes more correct predictions and avoids the misconceptions that arise in the minds of novice students when they are exposed to resonance theory, it would be better to use M.O. theory as much as possible in teaching organic chemistry.
Meislich, Herbert J. Chem. Educ. 1963, 40, 401.
MO Theory |
Resonance Theory
A comparison of theories: Molecular orbital, valence bond, and ligand field  Liehr, Andrew D.
Compares the development, nature, and applications of the molecular orbital, valence bond, and ligand field theories.
Liehr, Andrew D. J. Chem. Educ. 1962, 39, 135.
MO Theory |
Covalent Bonding |
Crystal Field / Ligand Field Theory
Ionic character, polarity, and electronegativity  Wilmshurst, J. K.
This article attempts to clearly define ionic character and polarity in both the valence bond and molecular orbital approximations; the electronegativity concept is also discussed.
Wilmshurst, J. K. J. Chem. Educ. 1962, 39, 132.
Covalent Bonding |
MO Theory
Molecular models featuring molecular orbitals  Brumlik, George C.
Molecular models have been constructed that attempt to represent atomic and molecular orbitals as accurately as the current theories of valence and pertinent experimental evidence permit.
Brumlik, George C. J. Chem. Educ. 1961, 38, 502.
Molecular Modeling |
Atomic Properties / Structure |
MO Theory
Some recent developments in the theory of bonding in complex compounds of the transition metals  Sutton, Leslie E.
Examines the ligand field and the molecular orbital theories of complexes, particularly involving transition metals.
Sutton, Leslie E. J. Chem. Educ. 1960, 37, 498.
Noncovalent Interactions |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Coordination Compounds |
MO Theory |
Covalent Bonding
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory