TIGER

Journal Articles: 15 results
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
How Efficient is a Laboratory Burner in Heating Water?  Michael P. Jansen
When a laboratory (or Bunsen) burner is used to heat water, all of the energy liberated by the burning fuel is not absorbed by the water. This article describes a procedure for determining the percentage efficiency of this common apparatus. This experiment is suitable for secondary school students who are familiar with stoichiometry , simple calorimetry, heats of reaction, collection of gas by downward displacement of water.
Jansen, Michael P. J. Chem. Educ. 1997, 74, 213.
Calorimetry / Thermochemistry
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Home-Study Microlabs  Dietmar Kennepohl
This article presents the use of microscaled chemistry experiments for individual home study and how it can be incorporated into a course with traditional laboratory work.
Kennepohl, Dietmar. J. Chem. Educ. 1996, 73, 938.
Microscale Lab |
Solutions / Solvents |
Calorimetry / Thermochemistry |
Qualitative Analysis |
Precipitation / Solubility
An inexpensive thermistor thermometer for beginning chemistry laboratories  Srivastava, Shyam B.; Meloan, Clifton E.
Design of a thermistor thermometer for heats-of-reaction measurements to 0.1C over short temperature ranges.
Srivastava, Shyam B.; Meloan, Clifton E. J. Chem. Educ. 1984, 61, 1027.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Chemical energy: A learning package  Cohen, Ita; Ben-Zvi, Ruth
Problems associated with the teaching of chemical energy and an instructional package designed to overcome those difficulties.
Cohen, Ita; Ben-Zvi, Ruth J. Chem. Educ. 1982, 59, 656.
Thermodynamics |
Calorimetry / Thermochemistry
The heat of combustion of cereals  Glachino, Gary G.
Determining the heat of combustion of common children's cereals.
Glachino, Gary G. J. Chem. Educ. 1980, 57, 372.
Calorimetry / Thermochemistry |
Food Science
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
Thermochemical investigations for a first-year college chemistry course. A survey of existing literature  Ewing, Galen W.
The purpose of this article is to review some of the experiments that appear in the literature involving thermochemistry.
Ewing, Galen W. J. Chem. Educ. 1965, 42, 26.
Calorimetry / Thermochemistry
Temperature and power measurements in precision solution calorimetry  O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G.
Presents the design of a calorimetric apparatus, and accompanying circuit schematic, and their application to calorimetry measurements.
O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G. J. Chem. Educ. 1961, 38, 512.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry