TIGER

Journal Articles: 10 results
Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Close-Packed Structure  John A. Hawkins, Linda M. Soper, Jeffrey L. Rittenhouse, and Robert C. Rittenhouse
Examines the pedagogical advantages in presenting the primitive rhombohedral unit cell as a means of helping students to gain greater insight into the nature of the cubic close-packed structure.
Hawkins, John A.; Soper, Linda M.; Rittenhouse, Jeffrey L.; Rittenhouse, Robert C. J. Chem. Educ. 2008, 85, 90.
Crystals / Crystallography |
Metals |
Solids
Density Visualization  Richard L. Keiter, Whitney L. Puzey, and Erin A. Blitz
Metal rods of high purity for several elements can be used to construct a display in which their relative densities may be assessed visually.
Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A. J. Chem. Educ. 2006, 83, 1629.
Metals |
Physical Properties |
X-ray Crystallography
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Filling in the Hexagonal Close-Packed Unit Cell  Robert C. Rittenhouse, Linda M. Soper, and Jeffrey L. Rittenhouse
The illustrations of the hcp unit cell that are used in textbooks at all levels and also in crystallography and solid-state reference works are incomplete, in that they fail to include fractions of middle layer atomic spheres with centers lying outside of the unit cell.
Rittenhouse, Robert C.; Soper, Linda M.; Rittenhouse, Jeffrey L. J. Chem. Educ. 2006, 83, 175.
Crystals / Crystallography |
Metals |
Solids
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State  William R. Robinson and Christopher P. Saari
Student tutorial and lecture demonstration software illustrating the structures and unit cells of metals.
Robinson, W. R. . J. Chem. Educ. 1995, 72, 814.
Metals |
Crystals / Crystallography |
Solid State Chemistry
A Window on the Solid-State  Robinson, William R.
"Part I: Structures of Metals" introduces the four basic structural types found in metals. "Part II: Unit Cells of Metals" discusses how to use a unit cell to describe a two-dimensional structure.
Robinson, William R. J. Chem. Educ. 1994, 71, 300.
Solid State Chemistry |
Solids |
Metals
A formula for calculating atomic radii of metals  Ping, Mei; Xiubin, Lei; Yuankai, Wen
In this paper, the authors present a theoretical formula for calculating metallic radii.
Ping, Mei; Xiubin, Lei; Yuankai, Wen J. Chem. Educ. 1990, 67, 218.
Atomic Properties / Structure |
Metals
Crystal models  Olsen, Robert C.
This short note illustrates a model designed to demonstrate the number of particles in a crystal that can be assigned to a unit cell.
Olsen, Robert C. J. Chem. Educ. 1967, 44, 728.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Metals |
Metallic Bonding