TIGER

Journal Articles: 46 results
Digitally Enhanced Thin-Layer Chromatography: An Inexpensive, New Technique for Qualitative and Quantitative Analysis  Amber Victoria Irish Hess
Thin-layer chromatography enhanced by digital photography is ideal for high school and college labs and can perform qualitative and quantitative analysis comparable to more expensive, high-performance TLC equipment. Using common photo-editing software, one can quickly produce multi-spectral scans, densitograms, and calibration curves, output previously limited to HPTLC.
Hess, Amber Victoria Irish. J. Chem. Educ. 2007, 84, 842.
Laboratory Equipment / Apparatus |
Qualitative Analysis |
Quantitative Analysis |
Thin Layer Chromatography |
Instrumental Methods |
Chromatography
An Improved Flame Test for Qualitative Analysis Using a Multichannel UV–Visible Spectrophotometer  Jonathan P. Blitz, Daniel J. Sheeran, and Thomas L. Becker
Describes the application of a multichannel array spectrometer equipped with a fiber optic probe for the acquisition of emission spectra as a means of performing flame tests for qualitative analysis in the general chemistry laboratory.
Blitz, Jonathan P.; Sheeran, Daniel J.; Becker, Thomas L. J. Chem. Educ. 2006, 83, 277.
Atomic Properties / Structure |
Instrumental Methods |
Laboratory Equipment / Apparatus |
Qualitative Analysis |
UV-Vis Spectroscopy |
Atomic Spectroscopy
Investigating the Photoelectric Effect Using LEDs and a Modular Spectroscope  Lucia Diaz and Charles A. Smith
With a modular spectroscope, students can monitor the effect of adjusting individually the position and orientation of the light source, grating, and slits. Investigating the position of the individual components dramatically illustrates the advantages of using long monochromators in conjunction with narrow slit widths in maximum-resolution spectroscopy. Once students fully understand the operation of the modular spectroscope, they calibrate it using a light source with a known spectrum. A circuit board containing colored light-emitting diodes (i.e., LEDs) is then used to measure a value for Planck¬Ěs constant through a photoelectric-effect-type equation.
Diaz, Lucia; Smith, Charles A. J. Chem. Educ. 2005, 82, 906.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Spectroscopy
Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory  Susan Hudgins, Yu Qin, Eric Bakker, and Curtis Shannon
Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis.
Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis. J. Chem. Educ. 2003, 80, 1303.
Acids / Bases |
Electrochemistry |
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Chemistry Comes Alive!, Volume 6
Abstract of Special Issue 30, a CD-ROM of Laboratory Techniques
  Jerrold J. Jacobsen, John W. Moore, John F. Zimmerman, and Lois M. Browne
Summary of Chemistry Comes Alive! Volume 6 focussing on laboratory techniques; includes manipulating and transferring samples, measuring, separating and purifying, safety, and quantitative techniques in volumetric analysis.
Jacobsen, Jerrold J.; Moore, John W.; Zimmerman, John F.; Browne, Lois M. J. Chem. Educ. 2002, 79, 1381.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Instrumental Methods |
Quantitative Analysis
A Film Canister Colorimeter  James Gordon, Alan James, Stephanie Harman, and Kristen Weiss
Constructing a low-cost, low-tech colorimeter that illustrates all of a colorimeter's elementary components and a fundamental application of spectroscopy (determining the unknown concentration of a solution).
Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen. J. Chem. Educ. 2002, 79, 1005.
Instrumental Methods |
Laboratory Equipment / Apparatus |
UV-Vis Spectroscopy
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
A Simple Laboratory-Constructed Automatic Titrator  Kurt L. Headrick, Terry K. Davies, and Aaron N. Haegele
The construction of a simple automatic titrator is described. The buret is replaced with a metering pump to provide a constant flow of titrant. The output from the pH meter is sent to a recorder via a laboratory- constructed differentiator, allowing the results to be plotted as potential versus time, first or second derivative
Headrick, Kurt L.; Davies, Terry K.; Haegele, Aaron N. J. Chem. Educ. 2000, 77, 389.
Instrumental Methods |
Acids / Bases |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Titration / Volumetric Analysis
An Inexpensive Commercially Available Analog-to-Digital Converter  Gary W. Breton
The use of an inexpensive analog-to-digital converter for interfacing gas chromatographs to computers in a teaching laboratory environment is described. Raw data may be read, processed, and printed from software supplied with the converter to afford chromatograms of acceptable quality.
Breton, Gary W. J. Chem. Educ. 2000, 77, 262.
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus |
Chromatography
Calculator-Based Instrumentation: The Design of a Digital Interface Based on I2C Technology  A. B. Hickman, W. G. Delinger, and Robin S. Helburn
In this work, we describe the interfacing of a digital temperature sensor to a Texas Instruments TI-85 calculator to make a portable instrument. The design of the interface is based on an integrated circuit that uses the inter-integrated circuit (I2C) protocol.
Hickman, A. B.; Delinger, W. G.; Helburn, Robin S. J. Chem. Educ. 2000, 77, 255.
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
A Simple Supplementary Offset Device for Data Acquisition Systems  Thomas Kappes and Peter C. Hauser
The device described in this article offers in a simple way the possibility of extending the offset range and can be combined with any data acquisition system. The signal offset is obtained by adding a manually adjustable voltage to the raw signal.
Kappes, Thomas; Hauser, Peter C. J. Chem. Educ. 1999, 76, 1429.
Instrumental Methods |
Laboratory Equipment / Apparatus
Student Construction of a Gel-Filled Ag/AgCl Reference Electrode for Use in a Potentiometric Titration  James M. Thomas
Instructions for the preparation of a Ag/AgCl "reference"-type electrode that uses a gel-type matrix are given. In addition, construction steps are provided for a very sturdy Pt-nichrome "inert" electrode, which can be used many times. Together, these two electrodes, along with a multivoltmeter, have been used successfully to determine the percent of iron in Fe(NH4)2(SO4)2 and in Fe2O2 unknowns purchased commercially.
Thomas, James M. J. Chem. Educ. 1999, 76, 97.
Instrumental Methods |
Electrochemistry |
Quantitative Analysis |
Oxidation / Reduction |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
A Solid-State Water Flow Fault Safety Switch for the Chemical Laboratory  Jonas Gruber, Rosamaria Wu Chia Li, and Isaac Gruber
A low cost solid-state water flow fault switch with a thermal sensing device is described that cuts the electric power of the heating element, normally employed in distillation and reflux devices, whenever their cooling water streams are impaired. This to prevent any possible escape of distillate vapours which may be toxic or flammable.
Gruber, Jonas; Li, Rosamaria Wu Chia; Gruber, Isaac. J. Chem. Educ. 1998, 75, 1132.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Laboratory Management
The Thermometer as a Simple Instrument  George F. Atkinson
The liquid-in-glass thermometer is used as a simple example of designing a measurement instrument which requires no previous knowledge of topics like electricity or optics.
Atkinson, George F. J. Chem. Educ. 1998, 75, 849.
Laboratory Equipment / Apparatus |
Instrumental Methods
Should Advanced Instruments Be Used in Introductory Courses?  Jack K. Steehler
Author argues whether or not to use advanced instruments in general/introductory chemistry courses.
Steehler, Jack K. J. Chem. Educ. 1998, 75, 274.
Learning Theories |
Laboratory Equipment / Apparatus |
Instrumental Methods
Simple and Inexpensive 8-Bit Analog to Digital Converter for the PCs Parallel Port  Orfeo Zerbinati
A simple and inexpensive 8-bit analog to digital (ADC) converter based on the ADC0804 integrated circuit, for replacing stripchart recorders by measuring analog voltages through the Centronics port (printer or parallel output) of an IBM-compatible personal computer, is proposed.
Zerbinati, Orfeo. J. Chem. Educ. 1997, 74, 1241.
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Getting Close with the Instructional Scanning Tunneling Microscope  Carl Steven Rapp
This state-of-the-art instrumentation is making it possible for students to actually view atoms in their own classroom. What is truly amazing, however, is that the ISTM can be set up and atomic resolution images obtained in about an hour.
Rapp, Carl Steven. J. Chem. Educ. 1997, 74, 1087.
Instrumental Methods |
Atomic Properties / Structure |
Nanotechnology |
Surface Science |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
Low-Cost Constant Temperature Heating Block  Charles G. Shevlin, Ward Coppersmith, Christopher Fish, Stanley Vlock, William Vellema
A simple constant temperature heat block was constructed from readily available materials. The configuration of the heating block can be constructed to meet the needs of any laboratory.
Shevlin, Charles G.; Coppersmith, Ward; Fish, Christopher; Vlock, Stanley; Vellema, William. J. Chem. Educ. 1997, 74, 958.
Instrumental Methods |
Laboratory Equipment / Apparatus
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement  Mark Muyskens
Application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor.
Muyskens, Mark. J. Chem. Educ. 1997, 74, 850.
Calorimetry / Thermochemistry |
Thermal Analysis |
Thermodynamics |
Laboratory Equipment / Apparatus |
Instrumental Methods
A Low-Cost and High-Performance Conductivity Meter  Rogerio T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
A two-electrode conductivimeter is described, which keep good performance in spite of its low cost.
da Rocha, Rogerio T. ; Gutz, Ivano G.R. ; do Lago, Claudimir L. J. Chem. Educ. 1997, 74, 572.
Instrumental Methods |
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
A Quantitative Conductance Apparatus  Danny Burns and Don Lewis
Circuitry, electrode configuration and calibration procedures are described for a conductance device. An alternative construction of the circuit is given allowing computer capture of the instrument response.
Burns, Danny; Lewis, Don. J. Chem. Educ. 1997, 74, 570.
Instrumental Methods |
Conductivity |
Liquids |
Solutions / Solvents |
Laboratory Equipment / Apparatus
Four Programs for Windows: Abstract of Volume 4D, Number 2: PSL Photometer  Steven D. Gammon
The majority of freshman chemistry laboratory programs include experiments that employ visible spectroscopy to teach Beer's law and derive related concentration information. These experiments are often done with a Baush and Lomb Spectronic 20 or Spectronic 21. We have developed an alternative instrument and software that offers significant advantages over the above spectrometers.
Gammon, Steven D. J. Chem. Educ. 1996, 73, 1077.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Spectroscopy |
Quantitative Analysis
Instrumentation and Laboratory Improvement Grants in Chemistry  
Listing of the 1995 awards in chemistry under the Instrumentation and Laboratory Improvement Program (ILI) of the Division of Undergraduate Education (DUE).
J. Chem. Educ. 1995, 72, A214.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Laboratory Management
Obtaining a Spectrum Easily: Using a Single-Beam Spectrophotometer  Mattson, Miranda E.; Mattson, William A.
Using a single-beam spectrophotometer (e.g. Spec 20) to obtain a spectrum.
Mattson, Miranda E.; Mattson, William A. J. Chem. Educ. 1995, 72, 569.
UV-Vis Spectroscopy |
Laboratory Equipment / Apparatus |
Laboratory Management |
Instrumental Methods
Basic Principles of Scale Reading  Peckham, Gavin D.
Steps and basic principles of reading the scales of laboratory instruments.
Peckham, Gavin D. J. Chem. Educ. 1994, 71, 423.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols
Inert atmosphere techniques for the microscale laboratory   Newton, Thomas A.
A system developed to introduce students to working under inert atmosphere.
Newton, Thomas A. J. Chem. Educ. 1991, 68, A60.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Microscale Lab
The History and Preservation of Chemical Instrumentation (Stock, John T.; Orna, Mary Virginia)  Kauffman, George B.
18 papers presented on the title subject presented at the 190th meeting of the American Chemical Society in Chicago in September of 1985.
Kauffman, George B. J. Chem. Educ. 1987, 64, A27.
Instrumental Methods |
Laboratory Equipment / Apparatus
The standardization of pH meters: A comparison of procedures for different types of instruments  Lund, Walter
Discusses the various approaches to the standardization of pH meters and the limitations of the various procedures.
Lund, Walter J. Chem. Educ. 1979, 56, 129.
Instrumental Methods |
pH |
Laboratory Equipment / Apparatus |
Laboratory Management |
Calibration |
Acids / Bases
Versatile pen-holder for chart recorders  Nieschlag, Henry J.
Using a small binder clip as a versatile pen-holder for chart recorders.
Nieschlag, Henry J. J. Chem. Educ. 1977, 54, 542.
Instrumental Methods |
Laboratory Equipment / Apparatus
A stabilized linear direct reading conductance apparatus. The solvolysis of t-butyl chloride  Cyr, T.; Prudhomme, J.; Zador, M.
A simple ac conductivity apparatus for experiments in chemical kinetics is described; the instrument is sufficiently reliable that it can be used by first year students and assembled in a few hours.
Cyr, T.; Prudhomme, J.; Zador, M. J. Chem. Educ. 1973, 50, 572.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Electrochemistry |
Kinetics
Increased utilization of electronic apparatus  Twigg, Martyn V.
It is possible to utilize more fully an electronic instrument by connecting it to several probes via a simple switch unit.
Twigg, Martyn V. J. Chem. Educ. 1972, 49, 191.
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Management |
Laboratory Equipment / Apparatus
A bridge-rectifier-milliammeter instrument for conductance studies  Nordmann, J.; Steinberg, Edwin
Modification of an earlier described instrument.
Nordmann, J.; Steinberg, Edwin J. Chem. Educ. 1970, 47, 241.
Electrochemistry |
Laboratory Equipment / Apparatus |
Instrumental Methods
The control of temperature - Part two  van Swaay, Maarten
Focusses on the design, characteristics, and operation of thermocouples and thermistors.
van Swaay, Maarten J. Chem. Educ. 1969, 46, A565.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Laboratory Management
Transistorized power sources for constant current coulometric titration  Stock, John T.
This coulometric titrator uses a complementary pair of transistors to minimize heating affects and improve stability with respect to temperature; an example of experimental use for the apparatus is included.
Stock, John T. J. Chem. Educ. 1969, 46, 858.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Quantitative Analysis |
Instrumental Methods |
Electrochemistry
Construction and uses of an inexpensive polarimeter  Vennos, Mary S.
Presents a design of an inexpensive polarimeter and its use to determine the specific rotation of sucrose and the concentration of an unknown sucrose solution.
Vennos, Mary S. J. Chem. Educ. 1969, 46, 459.
Laboratory Equipment / Apparatus |
Photochemistry |
Chirality / Optical Activity |
Enantiomers |
Instrumental Methods |
Noncovalent Interactions
Integrated circuits in the instrumental laboratory  Scherer, George A.
A brief introduction to integrated circuits that exemplifies their use in instrumentation through the construction of a square wave generator, audio amplifier, decimal counting unit, and operational amplifier.
Scherer, George A. J. Chem. Educ. 1969, 46, 399.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Semiconductors
Recent developments in calorimetry: Part two. Some associated measurements (cont.)  Wilhoit, Randolph C.
Examines the measurement of electricity, calorimetric standards, solution calorimetry, and specific types of calorimeters.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A685.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry (continued) Part 2. Some associated measurements  Wilhoit, Randolph C.
Topics examined include thermocouples, resistance thermometers, thermistors, and quartz crystal thermometers.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A629.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry. Part 1. Introductory survey of calorimetry  Wilhoit, Randolph C.
Explores the scope and purpose of calorimetric investigation, types of calorimeters, areas of calorimetric investigation and the procedures and calculations involved.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A571.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Avoiding parallax error when reading a mercury manometer  Carroll, H. L.
This short note describes a simple method employing graph paper to avoid parallax error when reading a mercury manometer.
Carroll, H. L. J. Chem. Educ. 1967, 44, 763.
Instrumental Methods |
Laboratory Equipment / Apparatus
A simple constant-flow device for use in titrimetric analysis  van Swaay, M.; Lolley, R. F.
Presents the design and an evaluation of performance for a simple constant-flow device for use in titrimetric analysis.
van Swaay, M.; Lolley, R. F. J. Chem. Educ. 1965, 42, 381.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Quantitative Analysis |
Instrumental Methods
Several designs for constructing potentiometers  Battino, Rubin
This paper describes several designs for constructing inexpensive potentiometers that possess a practical degree of precision.
Battino, Rubin J. Chem. Educ. 1965, 42, 211.
Electrochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
An inexpensive Littrow spectrograph  Thorn, Craig
A spectrograph of sufficient quality for introductory students need not be expensive is one is willing to construct it from readily available parts.
Thorn, Craig J. Chem. Educ. 1964, 41, 209.
Spectroscopy |
Instrumental Methods |
Laboratory Equipment / Apparatus
An inexpensive spectrograph of moderately high resolution  Schoenbeck, Ralph; Tabbutt, Frederick D.
This article describes a spectrograph with a resolving power greater than 6000 that can easily be built for a minimal cost.
Schoenbeck, Ralph; Tabbutt, Frederick D. J. Chem. Educ. 1963, 40, 452.
Spectroscopy |
Instrumental Methods |
Laboratory Equipment / Apparatus
Finding the rest point of an undamped analytical balance  Stacy, Irving F.
Provides a mathematical analysis for finding the rest point of an undamped analytical balance.
Stacy, Irving F. J. Chem. Educ. 1955, 32, 90.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Chemometrics
Some improvised apparatus  Casimir, Sister Mary
Presents several examples of simple equipment constructed by high school students, some for demonstrations and others for use in the lab.
Casimir, Sister Mary J. Chem. Educ. 1955, 32, 69.
Laboratory Equipment / Apparatus |
Instrumental Methods