TIGER

Journal Articles: 59 results
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The Living Textbook of Nuclear Chemistry: A Peer-Reviewed, Web-Based, Education Resource  W. Loveland, A. Gallant, and C. Joiner
The Living Textbook of Nuclear Chemistry is a collection of supplemental materials for teaching nuclear and radiochemistry. It contains audiovideo presentations of the history of nuclear chemistry; tutorial lectures by recognized experts on advanced topics in nuclear and radiochemistry; links to data compilations, articles, and monographs; an audio course on radiochemistry; and online editions of textbooks, training videos, etc. All content has been refereed.
Loveland, W. D.; Gallant, A.; Joiner, C. J. Chem. Educ. 2004, 81, 1670.
Nuclear / Radiochemistry
A Serious but Not Ponderous Book about Nuclear Energy (by Walter Scheider)  Peggy Geiger
Nuclear chemistry for the non-scientist.
Geiger, Peggy. J. Chem. Educ. 2002, 79, 314.
Nuclear / Radiochemistry |
Nonmajor Courses
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Nuclear and Radiochemistry: Fundamentals and Applications, 2nd, Revised Edition (by Karl Heinrich Lieser)  Curtis R. Keedy
Fundamentals and applications of nuclear and radiochemistry.
Keedy, Curtis R. J. Chem. Educ. 2002, 79, 35.
Nuclear / Radiochemistry |
Applications of Chemistry |
Geochemistry |
Astrochemistry
News from Online: Chemistry and Art  Carolyn Sweeney Judd
Web sites devoted to neutron activation analysis, carbon dating, X-ray fluorescence, polarized light spectroscopy, pigments and paints, and the arts in general.
Judd, Carolyn Sweeney. J. Chem. Educ. 2001, 78, 1322.
Dyes / Pigments |
Instrumental Methods |
Nuclear / Radiochemistry
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics  I. A. Leenson
The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century.
Leenson, I. A. J. Chem. Educ. 1998, 75, 998.
Learning Theories |
Nuclear / Radiochemistry |
Kinetics
Dice Shaking as an Analogy for Radioactive Decay and First Order Kinetics  Emeric Schultz
An experiment involving the shaking of sets of different sided dice is described. Dice of 4, 6, 8, 10, 12 and 20 sides are readily available. This experiment serves as an easily understood analogy for radioactive decay and for the more general case of first order kinetics.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 505.
Kinetics |
Nuclear / Radiochemistry
Radioactivity in Everyday Life  S. G. Hutchison, F. I. Hutchison
This paper discusses the terminology appropriate to radiation exposure and dose, the three sources of natural background radiation (cosmic radiation, cosmogenic radiation, and terrestrial radiation), and several radioactive isotopes that are significant contributors to the radiation exposure received by individuals.
Hutchison, S. G.; Hutchison, F. I. J. Chem. Educ. 1997, 74, 501.
Learning Theories |
Nuclear / Radiochemistry |
Isotopes |
Consumer Chemistry
Simple Rules for Determining Nuclear Stability and Type of Radioactive Decay  Mark L. Campbell
Simple rules for determining nuclear stability and type of radioactive decay.
Campbell, Mark L. J. Chem. Educ. 1995, 72, 892.
Nuclear / Radiochemistry
Cloud Chamber Activities for the High School Classroom  Perry, John Timothy; Sankey, Mary Ann
Instructions for constructing and using an inexpensive cloud chamber; includes student assignments and sample data.
Perry, John Timothy; Sankey, Mary Ann J. Chem. Educ. 1995, 72, 339.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Teaching Aids For Nuclear Chemistry  Atwood, Charles H.
Listing of topics and sources related to nuclear chemistry, including bibliographies for the Journal and Scientific American.
Atwood, Charles H. J. Chem. Educ. 1994, 71, 845.
Nuclear / Radiochemistry
High-Sensitivity Gamma Radiation Monitor for Teaching and Environmental Applications  Lyons, R. G.; Crossley, P. C.; Fortune, D.
Design, construction, and calibration of a high-sensitivity gamma radiation monitor.
Lyons, R. G.; Crossley, P. C.; Fortune, D. J. Chem. Educ. 1994, 71, 524.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Present and Future Nuclear Reactor Designs: Weighing the Advantages and Disadvantages of Nuclear Power with an Eye on Improving Safety and Meeting Future Needs  Miller, Warren F., Jr.
An overview of how nuclear energy is produced on macroscopic and microscopic scales with consideration given to benefits and liabilities of this energy source. The article includes a short look at nuclear power uses overseas and contains information about waste disposal, public opinion, and potential technical improvements.
Miller, Warren F., Jr. J. Chem. Educ. 1993, 70, 109.
Nuclear / Radiochemistry |
Green Chemistry |
Consumer Chemistry |
Applications of Chemistry
A cumulative count method for determining the half-life of barium-137 and gallium-68 radioactive isotopes: A spreadsheet application   Hughes, Elvin, Jr.
A profile of a spreadsheet application illustrating a cumulative count method for determining the half-life of barium-137 and gallium-68 radioactive isotopes.
Hughes, Elvin, Jr. J. Chem. Educ. 1991, 68, A41.
Nuclear / Radiochemistry |
Laboratory Computing / Interfacing
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
A student experiment to demonstrate the energy loss and straggling of electrons in matter  de Bruin, M.; Huijgen, F. W. J.
The experiment described has been applied routinely for several years in introductory courses in the application of radiation and isotopes. The results obtained give direct insight into the characteristics of the phenomena associated with the absorption of energetic electrons in matter.
de Bruin, M.; Huijgen, F. W. J. J. Chem. Educ. 1990, 67, 86.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Beta decay diagram   Suder, Robert
Too often instructors believe that students can intuitively understand nuclear decay from balanced equations, but it has been the author's experience that a diagram greatly enhances student knowledge of this process.
Suder, Robert J. Chem. Educ. 1989, 66, 231.
Nuclear / Radiochemistry
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
A method for the determination of half-lives of long lived radioisotopes  Muse, Lowell A.; Safter, Warren J.
It is possible to obtain a rather accurate estimate of the half-life of long-lived radioisotopes by absolute counting of a sample of known mass.
Muse, Lowell A.; Safter, Warren J. J. Chem. Educ. 1982, 59, 431.
Isotopes |
Nuclear / Radiochemistry |
Laboratory Management
The case of the isotopic artist  O'Connor, Rod
A problem regarding the decay of isotopes in pigments used to determine an art forgery.
O'Connor, Rod J. Chem. Educ. 1980, 57, 271.
Isotopes |
Nuclear / Radiochemistry |
Applications of Chemistry |
Dyes / Pigments
A passive nuclear debris collector  Griffin, John J.; Stevens, Ronald L.; Pszenny, Alexander A. P.; Russell, Irving J.
A simple collector that takes advantage of the ability of rain to remove trace radioactive substances from the lower atmosphere.
Griffin, John J.; Stevens, Ronald L.; Pszenny, Alexander A. P.; Russell, Irving J. J. Chem. Educ. 1979, 56, 475.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus |
Applications of Chemistry
Nuclear beta decay  Loveland, Walter
135. Most general chemistry textbooks contain serious conceptual errors in their treatment of fundamental nuclear processes.
Loveland, Walter J. Chem. Educ. 1979, 56, 250.
Nuclear / Radiochemistry
Variation of radioactive decay rates  Wolsey, Wayne C.
133. It is stated frequently in introductory chemistry texts that radioactive decay rates are invariant. Students are led to the impression, implicitly, if not explicitly, that changes in chemical form, temperature, pressure, etc. have no effect upon the half-lives of unstable nuclei. This constancy of decay is perhaps true for some particular modes of decay, but by no means is it true for all.
Wolsey, Wayne C. J. Chem. Educ. 1978, 55, 302.
Nuclear / Radiochemistry |
Thermodynamics
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Some simple classroom experiments on the Monte Carlo method  Para, A. Foglio; Lazzarini, E.
In this present paper some applications of the Monte Carlo method suggested to freshmen in nuclear physics and chemistry courses are described. These applications are concerned with radioactive decay, statistical fluctuation of the decay, the slowing of fast neutrons, and the calculation of the ratio of partial cross sections of certain nuclear reactions.
Para, A. Foglio; Lazzarini, E. J. Chem. Educ. 1974, 51, 336.
Nuclear / Radiochemistry
Stellar nucleosynthesis. A vehicle for the teaching of nuclear chemistry  Viola, V. E., Jr.
Summarizes the basic properties of matter, stellar evolution and nucleosynthesis, radioactive decay, synthetic and "super-heavy" elements, and radiation in the environment.
Viola, V. E., Jr. J. Chem. Educ. 1973, 50, 311.
Nuclear / Radiochemistry |
Astrochemistry
A freshman experiment in neutron activation analysis  Pickering, Miles
This experiment uses neutron activation analysis to determine the amount of manganese in "pure" iron wire.
Pickering, Miles J. Chem. Educ. 1972, 49, 430.
Nuclear / Radiochemistry |
Quantitative Analysis
Chemistry in art. Radiochemistry and forgery  Rogers, F. E.
It wasn't until a radiochemical analysis in 1968 that a 1937 forgery of a 17th century Dutch master was confirmed as a fake.
Rogers, F. E. J. Chem. Educ. 1972, 49, 418.
Applications of Chemistry |
Nuclear / Radiochemistry |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
General chemistry demonstrations based on nuclear and radiochemical phenomena  Herber, Rolfe H.
This paper is intended to provide a brief survey of lecture demonstrations, suitable for a general chemistry course, that incorporate some of the ideas, concepts, techniques, and instrumentation of the field of nuclear and radiochemistry.
Herber, Rolfe H. J. Chem. Educ. 1969, 46, 665.
Nuclear / Radiochemistry |
Isotopes
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Radioisotope generators for introductory laboratory use  Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H.
Describes the use of simple radioisotope generators in 23 different experiments involving nuclear theory.
Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H. J. Chem. Educ. 1969, 46, 287.
Nuclear / Radiochemistry |
Isotopes |
Laboratory Equipment / Apparatus
The disposal of chemical and radioactive waste - Part two  Pearsall, S. G.; Wilshusen, W.
Discusses procedures for the disposal of radioactive wastes.
Pearsall, S. G.; Wilshusen, W. J. Chem. Educ. 1968, 45, A677.
Laboratory Management |
Nuclear / Radiochemistry
Demonstration of a parent-daughter radioactive equilibrium using 137Cs-137mBa  Choppin, Gregory R.; Nealy, Carson L.
Demonstrates the relationship between radioactive half life and both the rate of decay and growth of a radioactive daughter.
Choppin, Gregory R.; Nealy, Carson L. J. Chem. Educ. 1964, 41, 598.
Isotopes |
Nuclear / Radiochemistry |
Equilibrium |
Rate Law
Dating of uranium minerals by the specific radioactivity of lead  Fairhall, A. W.
This paper discusses a method for estimating the age of a uranium mineral without recourse to elaborate mass-spectrometric techniques and presents an experimental procedure for doing so.
Fairhall, A. W. J. Chem. Educ. 1963, 40, 626.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Incorporating radioisotope techniques into the chemistry curriculum  Radin, Norman S.
Presents a list of radioisotope experiments suitable for a wide range of different domains and levels in chemistry.
Radin, Norman S. J. Chem. Educ. 1961, 38, 344.
Nuclear / Radiochemistry |
Isotopes
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Radiochemistry in the curriculum: Introduction  Phelan, Earl W.
This symposium was organized to share the experiences of some of the leaders in the field radiochemistry instruction.
Phelan, Earl W. J. Chem. Educ. 1960, 37, 382.
Nuclear / Radiochemistry
Letters  Hendricks, B. Clifford
A brief examination of the way in which general chemistry textbooks portray the emission of alpha, beta, and gamma rays.
Hendricks, B. Clifford J. Chem. Educ. 1960, 37, 161.
Nuclear / Radiochemistry
A half-life experiment for general chemistry students  Smith, W. T.; Wood, J. H.
This paper describes the authors' experiences with the measurement of the half-life of bismuth-210.
Smith, W. T.; Wood, J. H. J. Chem. Educ. 1959, 36, 492.
Nuclear / Radiochemistry |
Isotopes
Radioactive decay calculations without calculus  Guenther, William B.
Presents a method for half-life calculations that does not rely on the use of calculus.
Guenther, William B. J. Chem. Educ. 1958, 35, 414.
Chemometrics |
Nuclear / Radiochemistry
Atomic-weight variations in nature  Boggs, James E.
Atoms of the same element may have different masses (due to isotopic differences) depending on their source.
Boggs, James E. J. Chem. Educ. 1955, 32, 400.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
The relative contributions of various elements to the earth's radioactivity  Asimov, Isaac
Describes relative contributions of various elements to the earth's radioactivity.
Asimov, Isaac J. Chem. Educ. 1954, 31, 24.
Nuclear / Radiochemistry |
Geochemistry |
Isotopes
Dating with carbon 14  Kulp, J. Laurence
Examines the principles, technique, results of and problems with radioactive dating using carbon-14.
Kulp, J. Laurence J. Chem. Educ. 1953, 30, 432.
Nuclear / Radiochemistry |
Isotopes
Naturally occurring radioisotopes  Asimov, Isaac
Examines half-life calculations, long-lived radioactive isotopes, and the formation of short-lived radioactive isotopes.
Asimov, Isaac J. Chem. Educ. 1953, 30, 398.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Autoradiography as a science project  Huber, William S.
Describes several autoradiography techniques in which photographic plates are exposed to radioactive sources.
Huber, William S. J. Chem. Educ. 1951, 28, 226.
Nuclear / Radiochemistry