TIGER

Journal Articles: 34 results
The A1c Blood Test: An Illustration of Principles from General and Organic Chemistry  Robert C. Kerber
The glycated hemoglobin blood test is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1541.
Applications of Chemistry |
Bioinorganic Chemistry |
Carbohydrates |
Mechanisms of Reactions |
Proteins / Peptides |
Bioorganic Chemistry
Nature's Way To Make the Lantibiotics  Heather A. Relyea and Wilfred A. van der Donk
This article focuses on one class of antimicrobial compounds, the lantibiotics, and discusses their biosynthetic pathways as well as their molecular mode of action. In the course of the review, the meaning of the terms regio-, chemo-, and stereoselectivity are discussed.
Relyea, Heather A.; van der Donk, Wilfred A. J. Chem. Educ. 2006, 83, 1769.
Applications of Chemistry |
Bioorganic Chemistry |
Biotechnology |
Biosynthesis |
Catalysis |
Drugs / Pharmaceuticals |
Proteins / Peptides
A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory  George D. Bennett
Based on a technology that won a Presidential Green Chemistry Challenge Award, this experiment involves the thermal polymerization of aspartic acid and subsequent hydrolysis to give sodium poly(aspartate). The procedure is suitable for introducing students to the important topic of polymers and for illustrating several of the principles of green chemistry.
Bennett, George D. J. Chem. Educ. 2005, 82, 1380.
Green Chemistry |
Synthesis |
Industrial Chemistry |
Natural Products |
Polymerization |
Proteins / Peptides
A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule  David K. Smith
This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and CreutzfieldJacob.
Smith, David K. J. Chem. Educ. 2005, 82, 393.
Drugs / Pharmaceuticals |
Noncovalent Interactions |
Medicinal Chemistry |
Nanotechnology |
Proteins / Peptides
LC–MS of Metmyoglobin at pH = 2. Separation and Characterization of Apomyoglobin and Heme by ESI–MS and UV–Vis  Helen Cleary Stynes, Araceli Layo, and Richard W. Smith
This article describes an experiment employing LCMS where metmyoglobin is denatured to apomyoglobin and heme in a mobile phase gradient of acetonitrile H2O with 0.1% trifluoroacetic acid. The apomyoglobin is separated from the heme group by reversed-phase chromatography.
Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W. J. Chem. Educ. 2004, 81, 266.
Biotechnology |
Chromatography |
Instrumental Methods |
Mass Spectrometry |
Proteins / Peptides |
UV-Vis Spectroscopy
A "Polypeptide Demonstrator"  Addison Ault
I have used a telephone Handset Coil Cord as a simple and convenient model for the structure of a polypeptide.
Ault, Addison. J. Chem. Educ. 2004, 81, 196.
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
Protein Design Using Unnatural Amino Acids  Basar Bilgiçer and Krishna Kumar
Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.
Bilgiçer, Basar; Kumar, Krishna. J. Chem. Educ. 2003, 80, 1275.
Amino Acids |
Bioorganic Chemistry |
Biotechnology |
Proteins / Peptides |
Synthesis |
Molecular Properties / Structure
Identifying a Protein by MALDI–TOF Mass Spectrometry: An Experiment for the Undergraduate Laboratory  Anne E. Counterman, Matthew S. Thompson, and David E. Clemmer
Experiment that requires students to use mass spectral data (MALDI-TOF) to find the identity of an unknown protein sample by performing a database search on the Internet.
Counterman, Anne E.; Thompson, Matthew S.; Clemmer, David E. J. Chem. Educ. 2003, 80, 177.
Mass Spectrometry |
Proteins / Peptides |
Instrumental Methods |
Qualitative Analysis
Collaboration between Chemistry and Biology to Introduce Spectroscopy, Electrophoresis, and Molecular Biology as Tools for Biochemistry  Vicky L. H. Bevilacqua, Jennifer L. Powers, Connie Tran, Swapan S. Jain, Reem Chabayta, Dale L. Vogelien, Ralph J. Rascati, Michelle Hall, and Kathleen Diehl
Program that integrates a variety of instrumental techniques across the biological and chemistry curricula, including biochemistry, plant physiology, genetics, and forensics.
Bevilacqua, Vicky L. H.; Powers, Jennifer L.; Vogelien, Dale L.; Rascati, Ralph J.; Hall, Michelle; Diehl, Kathleen; Tran, Connie; Jain, Swapan S.; Chabayta, Reem . J. Chem. Educ. 2002, 79, 1311.
Biotechnology |
Enzymes |
Forensic Chemistry |
Hormones |
Instrumental Methods |
Kinetics |
Plant Chemistry |
Proteins / Peptides |
UV-Vis Spectroscopy
Blood-Chemistry Tutorials: Teaching Biological Applications of General Chemistry Material  Rachel E. Casiday, Dewey Holten, Richard Krathen, and Regina F. Frey
Four, Web-based tutorials that deal with chemical processes in the blood and provide an integrated biological context for a variety of chemical concepts.
Casiday, Rachel E.; Holten, Dewey; Krathen, Richard; Frey, Regina F. J. Chem. Educ. 2001, 78, 1210.
Applications of Chemistry |
Medicinal Chemistry |
Proteins / Peptides |
Acids / Bases |
Equilibrium |
Molecular Properties / Structure
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Chromatin Isolation and DNA Sequence Analysis in Large Undergraduate Laboratory Sections  Ann E. Hagerman
One exercise is a simple laboratory experiment in which chromatin is isolated from chicken liver and is resolved into histone proteins and DNA by ion-exchange chromatography. The other is a series of computer simulations that introduce DNA sequencing, mapping, and sequence analysis to the students.
Hagerman, Ann E. J. Chem. Educ. 1999, 76, 1426.
Biotechnology |
Proteins / Peptides |
Nucleic Acids / DNA / RNA
Immunoassay, DNA Analysis, and Other Ligand Binding Assay Techniques: From Electropherograms to Multiplexed, Ultrasensitive Microarrays on a Chip  Roger P. Ekins
"Ligand" or "binding" assays have made a major impact on biomedical research and clinical diagnosis since their development in the late 1950s. Immunoassay techniques (relying on specific antibodies to bind the target analyte) represent the best-known example, but analogous DNA and RNA analysis methods (using oligonucleotides to recognize defined polynucleotide sequences) are rapidly gaining in importance and are likely to exert profound effects on human society.
Ekins, Roger P. J. Chem. Educ. 1999, 76, 769.
Hormones |
Instrumental Methods |
Molecular Recognition |
Nanotechnology |
Proteins / Peptides |
Biotechnology
Use of Tangle Links To Show Globular Protein Structure  Marino, Francis
Using Tangle Links (a child's toy) to model the primary, secondary, tertiary, and quaternary structure of proteins.
Marino, Francis J. Chem. Educ. 1994, 71, 741.
Proteins / Peptides |
Molecular Modeling
Teaching bioorganic chemistry: An introductory course  Dugas, Hermann
Bioorganic chemistry could be defined as a discipline that is essentially concerned with using the tools of organic chemistry to understand biochemical processes.
Dugas, Hermann J. Chem. Educ. 1992, 69, 268.
Bioorganic Chemistry |
Catalysis |
Biological Cells |
Proteins / Peptides |
Medicinal Chemistry
Teaching biotechnology  Brooks, Helen B.; Brooks, David W.; Schuster, Sheldon M.; Wylie, Dwane E.
121. Bits and pieces, 45. HyperCard stack of the commonly used nucleic acid and protein techniques of biotechnology.
Brooks, Helen B.; Brooks, David W.; Schuster, Sheldon M.; Wylie, Dwane E. J. Chem. Educ. 1990, 67, 1033.
Biotechnology |
Proteins / Peptides
Isolation of the active site of cytochrome c by reverse-phase high-performance liquid chromatography  Kenigsberg, Paul A.; Blanke, Steven R.; Hager, Lowell P.
To serve as an introduction to research, an advanced-level graduate laboratory course should be challenging, incorporate currently relevant techniques, offer more responsibility to students, and contain a minimum of technical pitfalls. The following experiment meets all the aforementioned criteria.
Kenigsberg, Paul A.; Blanke, Steven R.; Hager, Lowell P. J. Chem. Educ. 1990, 67, 177.
HPLC |
Proteins / Peptides
A game show approach to teaching peptide sequencing  Lemley, Paul V.
The game allows each group of students to propose experiments, report what results would have occurred, interpret results, and propose more experiments.
Lemley, Paul V. J. Chem. Educ. 1989, 66, 1011.
Proteins / Peptides
Lecture demonstrations for organic/ biochemistry allied health courses  Deavor, James P.
Simple demonstrations on enantiomeric pairs and protein structure.
Deavor, James P. J. Chem. Educ. 1988, 65, 622.
Enantiomers |
Chirality / Optical Activity |
Proteins / Peptides |
Nonmajor Courses |
Amino Acids
Protein structure prediction in color  Davis, Lawrence C.; Radke, Gary A.
84. Implementing the Chuo and Faslar method for prediction of secondary structure and the Kyte and Doolittle method for predicting "hydropathic character" on an Apple IIe computer with color graphics.
Davis, Lawrence C.; Radke, Gary A. J. Chem. Educ. 1987, 64, 582.
Proteins / Peptides |
Molecular Properties / Structure
An inexpensive molecular model  Brickley, Meredith; Silva, R. A.
An inexpensive, space-filling model to help students understand the structure of proteins.
Brickley, Meredith; Silva, R. A. J. Chem. Educ. 1985, 62, 1077.
Molecular Modeling |
Proteins / Peptides
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Perspectives in biochemistry: Methods for DNA sequencing  Wood, Anne T.
Describes how DNA is sequenced.
Wood, Anne T. J. Chem. Educ. 1984, 61, 886.
Proteins / Peptides |
Biotechnology |
Electrophoresis
The synthesis of a dipeptide from its component amino acids: Protecting groups in the elementary organic laboratory  Young, Paul E.; Campbell, Andrew
A three-step procedure for synthesizing a dipeptide from its component amino acids.
Young, Paul E.; Campbell, Andrew J. Chem. Educ. 1982, 59, 701.
Synthesis |
Amino Acids |
Proteins / Peptides
Protein denaturation: A physical chemistry project lab  Pickering, Miles; Crabtree, Robert H.
This experiment links physical chemistry with biology and can be done with in advanced freshman course.
Pickering, Miles; Crabtree, Robert H. J. Chem. Educ. 1981, 58, 513.
Proteins / Peptides |
Biophysical Chemistry |
Molecular Properties / Structure
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
The separation of chymotrypsin and chymotrypsinogen: An affinity chromatography experiment for biological chemistry students  Branchini, Bruce; Ziolkowski, Rodney
An experiment that can be used as either a demonstration or a laboratory illustrating the principles of affinity chromatography to purify an enzyme.
Branchini, Bruce; Ziolkowski, Rodney J. Chem. Educ. 1979, 56, 281.
Separation Science |
Chromatography |
Proteins / Peptides
Amino acid sequence diversity in proteins  Blackman, David
The number of unique proteins that can be generated from a small number of amino acids is truly enormous.
Blackman, David J. Chem. Educ. 1977, 54, 170.
Proteins / Peptides |
Amino Acids
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Models for tertiary structures: Myoglobin and lysozyme  Smith, Ivor; Smith, Margaret J.; Roberts, Lynne
Presents the design details for constructing three dimensional models of proteins, including myoglobin and lysozyme.
Smith, Ivor; Smith, Margaret J.; Roberts, Lynne J. Chem. Educ. 1970, 47, 302.
Molecular Properties / Structure |
Molecular Modeling |
Proteins / Peptides |
Hydrogen Bonding |
Noncovalent Interactions
Disposable macromolecular model "kits"  Nicholson, Isadore
A brief note suggesting the use of colored pipe cleaners for the construction of three dimensional models of polymers, particularly enzymes and other proteins.
Nicholson, Isadore J. Chem. Educ. 1969, 46, 671.
Molecular Modeling |
Enzymes |
Proteins / Peptides
Polyethylene and pipecleaner models of biological polymers  Pollard, Harvey Bruce
An accurate method for modeling polysaccharides, nucleic acids, and proteins involves the use of pipecleaners, polyethylene tubing, and proteins.
Pollard, Harvey Bruce J. Chem. Educ. 1966, 43, 327.
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Carbohydrates
Ribonucleic acid: The simplest information-transmitting molecule  Fraenkel-Conrat, H.
Examines the chemical structure of nucleic acids, chemical modification of RNA and mutagenesis, role of RNA in protein structure, the mechanism of information transfer from RNA to protein, and mutants and coding.
Fraenkel-Conrat, H. J. Chem. Educ. 1963, 40, 216.
Proteins / Peptides