TIGER

Journal Articles: 32 results
Construction of a Polyaniline Nanofiber Gas Sensor  Shabnam Virji, Bruce H. Weiller, Jiaxing Huang, Richard Blair, Heather Shepherd, Tanya Faltens, Philip C. Haussmann, Richard B. Kaner, and Sarah H. Tolbert
The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. Its advantages include simplicity and low cost, making it suitable for both high school and college students, particularly in departments with modest means.
Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H. J. Chem. Educ. 2008, 85, 1102.
Acids / Bases |
Aromatic Compounds |
Conductivity |
Hydrogen Bonding |
Oxidation / Reduction |
Oxidation State |
pH |
Polymerization |
Synthesis
Refractive Index Determination of Transparent Polymers: Experimental Setup for Multi-Wavelength Determination and Calculation at Specific Frequencies Using Group Contribution Theory  Jay Dlutowski, Andres M. Cardenas-Valencia, David Fries, and Larry Langebrake
A simple lab that clearly shows the dependence of light reflection on the angle of incidence for transparent polymers is described. Light transmission measurements are used to determine the reflection magnitude and the refractive index of the material.
Dlutowski, Jay; Cardenas-Valencia, Andres M.; Fries, David; Langebrake, Larry. J. Chem. Educ. 2006, 83, 1867.
Physical Properties |
Polymerization |
UV-Vis Spectroscopy
The Amazingly Versatile Titanocene Derivatives  Donald C. Bowman
Derivatives of titanocene are remarkably versatile in their chemical applications. This article presents a brief review of the derivatives' uses in the fields of polymers, medical oncology, and organic synthesis.
Bowman, Donald C. J. Chem. Educ. 2006, 83, 735.
Applications of Chemistry |
Catalysis |
Drugs / Pharmaceuticals |
Organometallics |
Polymerization |
Synthesis
Polymers (Oxford Chemistry Primers No. 85) (David Walton and J. Phillip Lorimer)  John H. Shibata
Although the title suggests a broad, general coverage of polymers, in reality this book focuses primarily on synthesis and the macroscopic properties of polymers. A significant portion of the book emphasizes practical considerations of polymerscommercial aspects determined by the properties of polymers and the industrial processes for polymer synthesis and three-dimensional network formation. In many cases, specific polymer types and materials are described in detail. The concreteness of explicit examples to illustrate the principles of polymerization and the properties of networks and functional polymers are appropriate for readers seeking a practical introduction to polymers.
Shibata, John H. J. Chem. Educ. 2005, 82, 533.
Polymerization |
Synthesis
Aluminum Chloride  Jay A. Young
Properties, hazards, and storage requirements for aluminum chloride.
Young, Jay A. J. Chem. Educ. 2004, 81, 331.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate  Craig J. Donahue, Jennifer A. Exline, and Cynthia Warner
Procedure in which students depolymerize a common plastic (PET from 2-L pop bottles) under mild conditions using nontoxic chemicals to produce monomer building blocks.
Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia. J. Chem. Educ. 2003, 80, 79.
Industrial Chemistry |
Synthesis |
Aromatic Compounds |
Polymerization
Sodium Acetate CH3COONa  Jay A. Young
Properties, hazards, and storage requirements for sodium acetate.
Young, Jay A. J. Chem. Educ. 2002, 79, 1314.
Laboratory Management |
Physical Properties
An Introduction to the Scientific Process: Preparation of Poly(vinyl acetate) Glue  Robert G. Gilbert, Christopher M. Fellows, James McDonald, and Stuart W. Prescott
Exercise to give students experience in scientific processes while introducing them to synthetic polymer colloids.
Gilbert, Robert G.; Fellows, Christopher M.; McDonald, James; Prescott, Stuart W. J. Chem. Educ. 2001, 78, 1370.
Industrial Chemistry |
Noncovalent Interactions |
Surface Science |
Polymerization |
Applications of Chemistry |
Colloids
Bromination, Elimination, and Polymerization: A 3-Step Sequence for the Preparation of Polystyrene from Ethylbenzene  Elizabeth M. Sanford and Heather L. Hermann
An organic chemistry lab that introduces students to polymer chemistry is presented. Students complete a radical bromination of ethylbenzene, which is followed by elimination to give styrene. A radical polymerization is then completed to produce polystyrene.
Sanford, Elizabeth M.; Hermann, Heather L. J. Chem. Educ. 2000, 77, 1343.
Free Radicals |
Synthesis |
Polymerization
Testing the Electrical Resistivity of Wax and Copper Composites: An Experiment for Simulating the Electrical Behavior of Metal-Filled Plastics  Gabriel Pinto
Testing the Electrical Resistivity of Wax and Copper Composites: An Experiment for Simulating the Electrical Behavior of Metal-Filled Plastics
Gabriel Pinto. J. Chem. Educ. 1996, 73, 683.
Materials Science |
Polymerization |
Solids |
Physical Properties
Polymer Science Pilot Program   Mary L. Maier
The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function.
Mary L. Maier. J. Chem. Educ. 1996, 73, 643.
Polymerization |
Physical Properties |
Materials Science
Chemical Magic: Polymers from a Nonexistent Monomer  Seymour, Raymond B.; Kauffman, George B.
Synthesis, properties, and applications of polyvinyl alcohol and related polymers.
Seymour, Raymond B.; Kauffman, George B. J. Chem. Educ. 1994, 71, 582.
Polymerization |
Alcohols
Polymer additives: III. Surface property and processing modifiers  Stevens, Malcolm P.
The final installment of a three-part paper on the subject of polymer additives. Some of the properties these additives bring to polymers are: anti-blocking agents, anti-fogging agents, antistatic agents, coupling and releasing agents, blowing and crosslinking agents, defoaming agents, emulsifiers, and heat stabilizers.
Stevens, Malcolm P. J. Chem. Educ. 1993, 70, 713.
Polymerization |
Materials Science |
Applications of Chemistry |
Consumer Chemistry
Polymer additives: Part I. Mechanical property modifiers  Stevens, Malcolm P.
Discussion of both organic and inorganic materials added to polymers to modify their properties.
Stevens, Malcolm P. J. Chem. Educ. 1993, 70, 444.
Physical Properties |
Materials Science |
Applications of Chemistry
Identifying polymers through combustion and density   Blumberg, Avrom A.
Using analytical chemistry class experiences as a way to not only quantitatively and qualitatively analyze substances, but also to gain practical experience with characteristic chemical reactions of those substances.
Blumberg, Avrom A. J. Chem. Educ. 1993, 70, 399.
Physical Properties |
Qualitative Analysis |
Polymerization |
Quantitative Analysis
The Aqueous Ring-Opening Metathesis Polymerization of Furan-Maleic Anhydride Adduct: Increased Catalytic Activity Using a Recyclable Transition Metal Catalyst  Viswanathan, Tito; Jethmalani, Jagdish
ROMP offers an opportunity for an experiment that should fit well within the context of a laboratory in organic or polymer chemistry because the experimental yield can be characterized at the molecular level.
Viswanathan, Tito; Jethmalani, Jagdish J. Chem. Educ. 1993, 70, 165.
Polymerization |
NMR Spectroscopy
Illustration of Mn and Mw in chain-growth polymerization using a simplified model: An undergraduate polymer chemistry laboratory exercise  Snyder, Donald M.
This exercise helps to attain three pedagogical objectives. Laying out the chains illustrates that a polymer is composed of a mixture of various chain lengths, the random-number assembly of the chain illustrates the statistical aspects of chain growth, the limited number of chains and chain length of the chain allows direct calculation of the number of chains and the weight averages of the chains.
Snyder, Donald M. J. Chem. Educ. 1992, 69, 422.
Physical Properties |
Molecular Properties / Structure
Synthesis and a simple molecular weight determination of polystyrene  Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala
Procedure for synthesizing styrene and determining its molecular weight using thin layer chromatography.
Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala J. Chem. Educ. 1985, 62, 705.
Synthesis |
Polymerization |
Chromatography
On the crosslinked structure of rubber: Classroom demonstration or experiment: A quantitative determination by swelling  Sperling, L. H.; Michael, T. C.
Uses a rubber band to examine the crosslinked behavior of rubber.
Sperling, L. H.; Michael, T. C. J. Chem. Educ. 1982, 59, 651.
Applications of Chemistry |
Polymerization |
Molecular Properties / Structure
Polymer preparations in the laboratory  Lampman, Gary M.; Ford, Doug W.; Hale, Wayne R.; Pinkers, Arthur; Sewell, Christopher G.
Some convenient procedures for preparing polymers that have been used in a course for industrial arts students.
Lampman, Gary M.; Ford, Doug W.; Hale, Wayne R.; Pinkers, Arthur; Sewell, Christopher G. J. Chem. Educ. 1979, 56, 626.
Polymerization |
Nonmajor Courses |
Industrial Chemistry
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Polymerization
Chemical origins of color  Orna, Mary Virginia
Color is one of the few disciplines that cuts across the boundaries of art, biology, physics, psychology, chemistry, geology, mineralogy, and many other fields. There is hardly an object or a substance in nature that is not colored and virtually every commercially marketed item today is either deliberately colored or de-colored.
Orna, Mary Virginia J. Chem. Educ. 1978, 55, 478.
Descriptive Chemistry |
Physical Properties
A demonstration of polymer crosslinking and gel formation without heating  Ross, Joseph H.
Produces an elastic gel at room temperature and provides an effective demonstration of gel properties to use in a discussion of lyophilic colloids.
Ross, Joseph H. J. Chem. Educ. 1977, 54, 110.
Polymerization |
Molecular Properties / Structure |
Colloids
Reactivity ratios from copolymerization kinetics. A quantitative gas-liquid chromatography experiment  Mukatis, W. A.; Ohl, Temple
Gas-liquid chromatography is used to follow the rate of disappearance of two monomers as they polymerize.
Mukatis, W. A.; Ohl, Temple J. Chem. Educ. 1972, 49, 367.
Chromatography |
Gas Chromatography |
Polymerization |
Kinetics |
Rate Law
The chemistry of tetrasulfur tetranitride  Allen, Christopher W.
The chemistry of sulfur-nitrogen compounds has several features of interest and importance: stability of the sulfur-nitrogen bond, tendency to form six- and eight-membered rings, ring contraction, polymerization, and negative ion formation.
Allen, Christopher W. J. Chem. Educ. 1967, 44, 38.
Covalent Bonding |
Polymerization
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Polymer synthesis in the undergraduate organic laboratory  Sorenson, Wayne R.
Presents a series of experiments on polymer synthesis for the undergraduate organic laboratory.
Sorenson, Wayne R. J. Chem. Educ. 1965, 42, 8.
Synthesis |
Polymerization |
Reactions |
Mechanisms of Reactions
The physical and chemical character of graphite  Tee, Peter A. H.; Tonge, Brian L.
Examines the physical and chemical character of graphite, its occurrence and manufacture, and uses and future applications.
Tee, Peter A. H.; Tonge, Brian L. J. Chem. Educ. 1963, 40, 117.
Physical Properties
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Linear polymerization and synthetic fibers  Moncrieff, Robert W.
Examines early research in polymers, the synthesis of polyesters and polyamides, the polymerization of hydrocarbons, and condensation and addition polymerization.
Moncrieff, Robert W. J. Chem. Educ. 1954, 31, 233.
Polymerization
Lecture demonstrations with silicones  Spalding, David P.
Offers a series of demonstrations designed to illustrate some of the basic properties of the silicones that make them unusual substances, including their resistance to high and low temperatures, unusual surface properties, and chemical inertness.
Spalding, David P. J. Chem. Educ. 1952, 29, 288.
Polymerization
The mechanisms of the reactions of aliphatic hydrocarbons  Schmerling, Louis
Examines the formation of carbonium ions and free radicals, the polymerization of olefins, hydrogen-halogen exchange, the condensation of haloalkanes with alkenes, the alkylation of paraffins, the condensation of paraffins with chloroolefins, the cracking of paraffins and olefins, and the isomerization of paraffins.
Schmerling, Louis J. Chem. Educ. 1951, 28, 562.
Mechanisms of Reactions |
Alkanes / Cycloalkanes |
Free Radicals |
Polymerization