TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
4 Videos
7 Assessment Questions
11 Journal Articles
18 Other Resources
Videos: First 3 results
Polyurethane Foam in Micro Gravity  
Polyurethane foam is formed in micro gravity (NASA Reduced Gravity Program).
Polymerization
Metallocene Catalyzed Polymerization of Ethylene  
Polymerization chemistry is demonstrated by the reaction between ethylene and a Ziegler-Natta catalyst.
Polymerization |
Catalysis |
Reactions
Formaldehyde Copolymers  
Formaldehyde Copolymers
Electrophilic Substitution |
Phenols |
Polymerization
View all 4 results
Assessment Questions: First 3 results
Special_Topics : BiopolyFromMonomer (20 Variations)
Match each of the following biomolecules to the type of biopolymer it will form.
Polymerization
Special_Topics : Copolymerization (20 Variations)
Identify the polymer produced from the polymerization of glycolic acid.

Polymerization
Special_Topics : IDMonomerFromPoly (20 Variations)
Identify the monomer used to produce the following polymer.

Polymerization
View all 7 results
Journal Articles: First 3 results.
Pedagogies:
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
The Amazingly Versatile Titanocene Derivatives  Donald C. Bowman
Derivatives of titanocene are remarkably versatile in their chemical applications. This article presents a brief review of the derivatives' uses in the fields of polymers, medical oncology, and organic synthesis.
Bowman, Donald C. J. Chem. Educ. 2006, 83, 735.
Applications of Chemistry |
Catalysis |
Drugs / Pharmaceuticals |
Organometallics |
Polymerization |
Synthesis
Olefin Metathesis Polymerization: The Unexpected Role of Carbenoid Species in Formation of Macromolecules  Donald M. Snyder
One particularly interesting topic still rarely seen outside of the research literature is the subject of metathesis polymerization. This article is intended to present the interested reader with a brief introduction to the mechanism of this unique process, its historical background, and some recent developments in the field.
Snyder, Donald M. J. Chem. Educ. 1996, 73, 155.
Polymerization |
Alkenes |
Mechanisms of Reactions
View all 11 articles
Other Resources: First 3 results
Addition Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Polymerization
Condensation Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Polymerization
Copoly; A Tool for Understanding Copolymerization and Monomer Sequence Distribution of Copolymers  Massoud Miri, Juan A. Morales-Tirado
The study of the composition and monomer sequence distribution of binary copolymers is often complicated because of the many definitions of representative properties for the sequence distribution, the numerous calculations required, and occasionally the abstract treatment of the statistical processes describing the copolymer formation. Copoly resolves these issues with a user-friendly, highly visual interface to perform all calculations. Using Microsoft Excel and Word, Copoly is compatible with Windows and Mac OS. In Copoly the students enter up to five independent data parameters using the Data Input Window, and immediately see the results. To obtain diagrams for a copolymerization obeying a second-order Markovian process, the fraction of one monomer, A, and the reactivity ratios, rA, rB, rA´ and rB´ need to be entered; for a first-order Markovian process only the first three of these are required. For a Bernoullian- or zeroth-order Markovian process only A and rA are required. The results are displayed on separate sheets labeled: 1. Copolymerization Diagrams, 2. Dyads and Triads, 3. Sequence Length Distribution, 4. Simulated Copolymer Design, and 5. Summary.
Polymerization
View all 18 results