TIGER

Journal Articles: 11 results
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
The Amazingly Versatile Titanocene Derivatives  Donald C. Bowman
Derivatives of titanocene are remarkably versatile in their chemical applications. This article presents a brief review of the derivatives' uses in the fields of polymers, medical oncology, and organic synthesis.
Bowman, Donald C. J. Chem. Educ. 2006, 83, 735.
Applications of Chemistry |
Catalysis |
Drugs / Pharmaceuticals |
Organometallics |
Polymerization |
Synthesis
Olefin Metathesis Polymerization: The Unexpected Role of Carbenoid Species in Formation of Macromolecules  Donald M. Snyder
One particularly interesting topic still rarely seen outside of the research literature is the subject of metathesis polymerization. This article is intended to present the interested reader with a brief introduction to the mechanism of this unique process, its historical background, and some recent developments in the field.
Snyder, Donald M. J. Chem. Educ. 1996, 73, 155.
Polymerization |
Alkenes |
Mechanisms of Reactions
Using Formal Charges in Teaching Descriptive Inorganic Chemistry  DeWit, David G.
Using the concept of formal charges to predict bond properties, determine molecular structure, and explain reactivities and the tendency to polymerize.
DeWit, David G. J. Chem. Educ. 1994, 71, 750.
Descriptive Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Polymerization
Polymer additives: III. Surface property and processing modifiers  Stevens, Malcolm P.
The final installment of a three-part paper on the subject of polymer additives. Some of the properties these additives bring to polymers are: anti-blocking agents, anti-fogging agents, antistatic agents, coupling and releasing agents, blowing and crosslinking agents, defoaming agents, emulsifiers, and heat stabilizers.
Stevens, Malcolm P. J. Chem. Educ. 1993, 70, 713.
Polymerization |
Materials Science |
Applications of Chemistry |
Consumer Chemistry
Classroom demonstrations of polymer principles. Part II. Polymer formation  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Photopolymerization of acrylamide, bulk polymerization of methyl methacrylate, phenolic resins, and household adhesives and sealants.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 886.
Polymerization
Polymerization as a model chain reaction  Morton, Maurice
The building of long chain macromolecules offers the best opportunity for the study of chain reactions and the free radical mechanism.
Morton, Maurice J. Chem. Educ. 1973, 50, 740.
Conferences |
Professional Development |
Polymerization |
Reactions |
Free Radicals |
Kinetics |
Mechanisms of Reactions
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Polymer synthesis in the undergraduate organic laboratory  Sorenson, Wayne R.
Presents a series of experiments on polymer synthesis for the undergraduate organic laboratory.
Sorenson, Wayne R. J. Chem. Educ. 1965, 42, 8.
Synthesis |
Polymerization |
Reactions |
Mechanisms of Reactions
Anionic polymerization of vinyl monomers: A demonstration  Zilkha, Albert; Albeck, Michael; Frankel, Max
Describes experiments on the polymerization of styrene using butyl lithium as a catalyst by an anionic mechanism.
Zilkha, Albert; Albeck, Michael; Frankel, Max J. Chem. Educ. 1958, 35, 345.
Polymerization |
Catalysis
The mechanisms of the reactions of aliphatic hydrocarbons  Schmerling, Louis
Examines the formation of carbonium ions and free radicals, the polymerization of olefins, hydrogen-halogen exchange, the condensation of haloalkanes with alkenes, the alkylation of paraffins, the condensation of paraffins with chloroolefins, the cracking of paraffins and olefins, and the isomerization of paraffins.
Schmerling, Louis J. Chem. Educ. 1951, 28, 562.
Mechanisms of Reactions |
Alkanes / Cycloalkanes |
Free Radicals |
Polymerization