Journal Articles: 8 results
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic a¬Ěhydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
The Art and Science of Organic and Natural Products Synthesis  K. C. Nicolaou, E. J. Sorensen, and N. Winssinger
In this article, the history of the art and science of organic and natural products synthesis is briefly reviewed and the state of the art is discussed. The impact of this discipline on biology and medicine is amply demonstrated with examples, and projections for future developments in the field are made.
Nicolaou, K. C.; Sorensen, E. J.; Winssinger, N. J. Chem. Educ. 1998, 75, 1225.
Natural Products |
Synthesis |
Medicinal Chemistry |
Applications of Chemistry |
Drugs / Pharmaceuticals
Protecting Groups in Carbohydrate Chemistry  Sigthór Pétursson
The most important protecting groups in carbohydrate chemistry are reviewed. The paper is aimed at those beginning to specialize in synthetic carbohydrate chemistry and at teachers with other specialties who wish to go beyond the content of general organic chemistry textbooks.
Petursson, Sigthor. J. Chem. Educ. 1997, 74, 1297.
Carbohydrates |
Molecular Properties / Structure |
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
Disconnect by the numbers: A beginner's guide to synthesis  Smith, Michael B.
A protocol for planning organic syntheses using the disconnection method.
Smith, Michael B. J. Chem. Educ. 1990, 67, 848.
Synthesis |
Mechanisms of Reactions
A phase transfer catalyzed permanganate oxidation: preparation of vanillin from isoeugenol acetate  Lampman, Gary M.; Sharpe, Steven D.
There are several attractive features in this reaction sequence for the undergraduate laboratory. These include (1) use of a protecting acetate group, (2) use of a familiar "textbook" oxidant, potassium permanganate, (3) use of phase transfer catalyst, (4) preparing of an aldehyde, (5) short reaction period, and (6) the laboratory has a pleasant aroma.
Lampman, Gary M.; Sharpe, Steven D. J. Chem. Educ. 1983, 60, 503.
Oxidation / Reduction |
Catalysis |
Natural Products |
Synthesis |
Aldehydes / Ketones |
Alcohols |
Aromatic Compounds
Preparation of 1,1-Diphenyl-1-hydroxy-3-butanone  Rivett, D. E. A.
Exemplifies the use of a protecting group in organic synthesis.
Rivett, D. E. A. J. Chem. Educ. 1980, 57, 751.
Synthesis |
Molecular Properties / Structure |
Aldehydes / Ketones
Hazardous chemicals data  National Fire Protection Association
Explains aspects of chemical hazard data and presents hazards associated with acetaldehyde.
National Fire Protection Association J. Chem. Educ. 1968, 45, A115.
Chemometrics |
Aldehydes / Ketones |
Laboratory Management