TIGER

Journal Articles: 9 results
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Keep Going with Cyclooctatetraene!  Addison Ault
This paper shows how some simple properties of cyclooctatetraene can indicate important ideas about the structure of cyclooctatetraene.
Ault, Addison. J. Chem. Educ. 2000, 77, 55.
Aromatic Compounds |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Pericyclic Reactions: FMO Approach-Abstract of Issue 9904M  Albert W. M. Lee, C. T. So, C. L. Chan, and Y. K. Wu
Pericyclic Reactions: FMO Approach is a program for Macintosh computers in which the frontier molecular orbital approaches to electrocyclic and cycloaddition reactions are animated. The bonding or antibonding interactions of the frontier molecular orbital(s) determine whether the reactions are thermally or photochemically allowed or forbidden.
Lee, Albert W. M.; So, C. T.; Chan, C. L.; Wu, Y. K. J. Chem. Educ. 1999, 76, 720.
MO Theory |
Mechanisms of Reactions
Photodimerization of Anthracene  Gary W. Breton and Xoua Vang
The laboratory experiment of the photodimerization of anthracene is given.
Breton, Gary W.; Vang, Xoua. J. Chem. Educ. 1998, 75, 81.
Photochemistry |
UV-Vis Spectroscopy |
Aromatic Compounds |
Synthesis
An undergraduate laboratory program project involving photocyclizations in independent syntheses of novel chrysenes and phenanthrenes  Letcher, R. M.
This experiment attempts to fulfill such objectives as providing meaningful and viable preparative reactions, providing an opportunity for independent laboratory work within a project framework and under conditions of nearly equal opportunity and experience.
Letcher, R. M. J. Chem. Educ. 1981, 58, 1020.
Undergraduate Research |
Synthesis |
Aromatic Compounds |
Photochemistry |
Diastereomers |
NMR Spectroscopy |
Alcohols |
Thin Layer Chromatography
Structure-resonance theory for pericyclic transition states  Herndon, William C.
The purpose of this article is to show that structure-resonance theory can be used to understand the effects of structure or substituents on the rates of thermal pericyclic reactions.
Herndon, William C. J. Chem. Educ. 1981, 58, 371.
Aromatic Compounds |
Resonance Theory |
Molecular Properties / Structure
Preparation of 2,3-diphenyl-1-indenone and related compounds  Clark, Thomas J.
The author describes a series of preparative experiments which students in organic chemistry have found enjoyable and instructive.
Clark, Thomas J. J. Chem. Educ. 1971, 48, 554.
Synthesis |
Aldehydes / Ketones |
Aromatic Compounds
Models to illustrate orbital symmetry effects in organic reactions  Brown, Peter
From a pedagogic point of view, conservation of orbital symmetry is easily assimilated by students with a rudimentary knowledge of simple MO theory and of symmetry. The author has found in teaching over the past three years at both graduate and undergraduate levels that use of a simple set of orbital models as described in this article has enormous advantages as a visual aid in the construction and assignment of symmetry elements to the appropriate semi-localized Huckel-type MOs and in following their stereo chemical fate in concerned reactions.
Brown, Peter J. Chem. Educ. 1971, 48, 535.
Molecular Modeling |
MO Theory |
Group Theory / Symmetry
Alicyclic chemistry: The playground for organic chemists  Ferguson, Lloyd N.
This article reviews a number of general topics that have been of special interest in alicyclic chemistry, including conformational analysis, the nonclassical versus classical norbornyl cation, Woodward-Hoffmann electrolytic rules, the aromaticity of nonbenzoid rings, strained ring systems, bridgehead activity, and photochemical syntheses and rearrangements.
Ferguson, Lloyd N. J. Chem. Educ. 1969, 46, 404.
Conformational Analysis |
Synthesis |
Photochemistry