TIGER

Journal Articles: 11 results
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Colorful Azulene and Its Equally Colorful Derivatives  Robert S. H. Liu
Analysis of azulene and related compounds for an explanation of their respective colors.
Liu, Robert S. H. J. Chem. Educ. 2002, 79, 183.
Atomic Properties / Structure |
MO Theory |
UV-Vis Spectroscopy |
Aromatic Compounds |
Alkenes
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
An Attention-Getting Model for Atomic Orbitals  Kiefer, Edgar F.
Tapping a spoon on a coffee mug to illustrate the circular orbitals of benzene.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 500.
MO Theory |
Aromatic Compounds
Synthesis of azulene, a blue hydrocarbon  Lemal, David M.; Goldman, Glenn D.
A procedure of the synthesis of this simple, beautiful, and theoretically interesting compound with many unusual properties.
Lemal, David M.; Goldman, Glenn D. J. Chem. Educ. 1988, 65, 923.
MO Theory |
Aromatic Compounds |
Diastereomers |
Synthesis
Toward an organic chemist's periodic table  Hall, H. K., Jr.
An analogy between electron transfer reactions of the elements and those of organic molecules.
Hall, H. K., Jr. J. Chem. Educ. 1980, 57, 49.
MO Theory |
Reactions |
Mechanisms of Reactions
Novel pictorial approach to teaching MO concepts in polyatomic molecules  Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G.
Methods used in a one-quarter course to familiarize students with the general applicability of delocalized and localized molecular orbitals to polyatomic systems; includes examples of delocalized and localized molecular orbitals of XeF2, C3H3+, CH4, and CO2.
Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G. J. Chem. Educ. 1977, 54, 590.
MO Theory |
Atomic Properties / Structure
Localized and delocalized molecular orbital description of methane  Bernett, William A.
The purpose of this article is to show that the relationship between localized and delocalized molecular orbitals can be easily demonstrated for the case of methane.
Bernett, William A. J. Chem. Educ. 1969, 46, 746.
Molecular Properties / Structure |
MO Theory
Aromatic substitution  Duewell, H.
Reports on the use of the molecular orbit theory in a qualitative approach to the activation and orientation of substitution in aromatic systems.
Duewell, H. J. Chem. Educ. 1966, 43, 138.
Aromatic Compounds |
MO Theory |
Mechanisms of Reactions
Rules for molecular orbital structures  Meislich, Herbert
In view of the fact that molecular orbital theory makes more correct predictions and avoids the misconceptions that arise in the minds of novice students when they are exposed to resonance theory, it would be better to use M.O. theory as much as possible in teaching organic chemistry.
Meislich, Herbert J. Chem. Educ. 1963, 40, 401.
MO Theory |
Resonance Theory