TIGER

Journal Articles: 22 results
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Probing the Rate-Determining Step of the Claisen–Schmidt Condensation by Competition Reactions  Kendrew K. W. Mak, Wing-Fat Chan, Ka-Ying Lung, Wai-Yee Lam, Weng-Cheong Ng, and Siu-Fung Lee
This article describes a physical organic experiment to identify the rate-determining step of the ClaisenSchmidt condensation of benzaldehyde and acetophenone by studying the linear free energy relationship.
Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung. J. Chem. Educ. 2007, 84, 1819.
Aldehydes / Ketones |
Aromatic Compounds |
Gas Chromatography |
Kinetics |
Mechanisms of Reactions |
Synthesis
Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones  Nicholas G. Angelo, Laura K. Henchey, Adam J. Waxman, James W. Canary, Paramjit S. Arora, and Donald Wink
Describes an experiment in which students perform the aldol condensation on an unknown aldehyde and ketone and make use of TLC, column chromatography, recrystallization, and characterization by 1H NMR, GCMS, and FTIR.
Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald. J. Chem. Educ. 2007, 84, 1816.
Aldehydes / Ketones |
Chromatography |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Thin Layer Chromatography
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
Preparing Students for Research: Synthesis of Substituted Chalcones as a Comprehensive Guided-Inquiry Experience  James R. Vyvyan, Donald L. Pavia, Gary M. Lampman, and George S. Kriz Jr.
An aldol condensation of substituted benzaldehydes with substituted acetophones to produce substituted benzalacetophenones (chalcones) in a guided-inquiry approach.
Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr. J. Chem. Educ. 2002, 79, 1119.
Medicinal Chemistry |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds |
Aldehydes / Ketones
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
A Simple Organic Microscale Experiment Illustrating the Equilibrium Aspect of the Aldol Condensation  Ernest A. Harrison Jr.
A simple microscale experiment has been developed that illustrates the equilibrium aspect of the aldol condensation by using two versions of the standard preparation of tetraphenylcyclopentadienone from benzil and 1,3-diphenyl- 2-propanone.
Harrison, Ernest A., Jr. J. Chem. Educ. 1998, 75, 636.
Equilibrium |
Reactions |
Mechanisms of Reactions |
Microscale Lab |
Aldehydes / Ketones
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
Schiff base puzzle project.  Todd, David.
Students pick an unknown substituted aniline and a substituted benzaldehyde, produces the corresponding Schiff base from them, and compares its melting point to those of 25 possible Schiff bases (their structures and melting points being given).
Todd, David. J. Chem. Educ. 1992, 69, 584.
Qualitative Analysis |
Aldehydes / Ketones |
Amines / Ammonium Compounds
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
Example of the Robinson annulation procedure via phase transfer catalysis a beginning organic synthesis experiment  Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D.
A brief description of the procedure.
Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D. J. Chem. Educ. 1988, 65, 637.
Catalysis |
Aromatic Compounds |
Synthesis |
Aldehydes / Ketones
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
An aldol condensation experiment using a number of aldehydes and ketones  Hathaway, Bruce A.
Four aldehydes and four ketones can be used to synthesize sixteen different products via an aldol condensation reaction.
Hathaway, Bruce A. J. Chem. Educ. 1987, 64, 367.
Aldehydes / Ketones
Michael addition and aldol condensation: A simple teaching model for organic laboratory  Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R.
Three experiments are presented in this paper: Michael addition; Michael addition followed by aldol addition; and Michael addition followed by aldol condensation.
Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R. J. Chem. Educ. 1986, 63, 443.
Addition Reactions |
Aldehydes / Ketones |
Alcohols
Acetaldehyde: a chemical whose fortunes have changed  Wittcoff, Harold A.
Acetaldehyde is an example of a chemical whose use is declining because chemists have replaced it with superior chemicals.
Wittcoff, Harold A. J. Chem. Educ. 1983, 60, 1044.
Aldehydes / Ketones |
Applications of Chemistry
A crossed aldol condensation for the undergraduate laboratory  Angres, Isaac; Zieger, Herman E.
This two-step experiment for undergraduate organic chemistry students illustrates three basic ideas: organic chemistry students illustrate three basic ideas (1) crossed aldol condensation; (2) the acidity of benzylic hydrogen in hydrocarbons; and (3) reduction of a double bond in hydride transfer.
Angres, Isaac; Zieger, Herman E. J. Chem. Educ. 1974, 51, 64.
Aromatic Compounds |
Aldehydes / Ketones |
Acids / Bases |
Alcohols
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions