TIGER

Journal Articles: 7 results
A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds  Robert E. Rosenberg
Students teams identify unknowns and their reaction products and use their data to deduce that esters are less electrophilic than the other carbonyl compounds present, that Grignard reagents are more nucleophilic than sodium borohydride, and that carboxylic acid derivatives do not undergo the nucleophilic addition reactions that are characteristic of aldehydes and ketones.
Rosenberg, Robert E. J. Chem. Educ. 2007, 84, 1474.
Addition Reactions |
Aldehydes / Ketones |
Esters |
Grignard Reagents |
IR Spectroscopy |
Oxidation / Reduction |
Reactions |
Student-Centered Learning
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Ethanol Metabolism and the Transition from Organic Chemistry to Biochemistry  Richard D. Feinman
Introducing alcohol dehydrogenase and aldehyde dehydrogenase reactions in organic chemistry to ease transition to biochemistry.
Feinman, Richard D. J. Chem. Educ. 2001, 78, 1215.
Metabolism |
Oxidation / Reduction |
Reactions |
Mechanisms of Reactions |
Alcohols |
Carbohydrates
Reduction of Carboxylic Acids with Sodium Borohydride and an Electrophile  Jan William Simek, Thad Tuck, and Kelly Courter Bush
Integration of new reduction conditions into a procedure applicable to the first-year organic chemistry laboratory, where reduction of the carboxylic acid group has remained an obstacle, notwithstanding the use of borane or LiAlH4 (2) on the microscale. The NaBH4 method with either electrophile can be modified to any scale; in our hands, the use of I2 as the electrophile performed better at the semimicro scale than the H2SO4 method.
Simek, Jan William; Tuck, Thad; Bush, Kelly Courter . J. Chem. Educ. 1997, 74, 107.
Carboxylic Acids |
Aromatic Compounds |
Oxidation / Reduction
Selective oxidation in the presence of a heterocycle  Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R.
The process of weighing the advantages and disadvantages of various oxidation methods are presented in this paper.
Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R. J. Chem. Educ. 1986, 63, 358.
Alcohols |
Aldehydes / Ketones |
Heterocycles |
Oxidation / Reduction |
Carboxylic Acids
Reduction with complex metal hydrides  Gaylord, Norman G.
Focusses on the use of lithium aluminum hydride, aluminum hydride, magnesium aluminum hydride, sodium aluminum hydride, sodium borohydride, potassium borohydride, lithium borohydride, and lithium gallium hydride as analytical reducing reagents.
Gaylord, Norman G. J. Chem. Educ. 1957, 34, 367.
Oxidation / Reduction |
Metals |
Reactions