TIGER

Journal Articles: 15 results
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds  Robert E. Rosenberg
Students teams identify unknowns and their reaction products and use their data to deduce that esters are less electrophilic than the other carbonyl compounds present, that Grignard reagents are more nucleophilic than sodium borohydride, and that carboxylic acid derivatives do not undergo the nucleophilic addition reactions that are characteristic of aldehydes and ketones.
Rosenberg, Robert E. J. Chem. Educ. 2007, 84, 1474.
Addition Reactions |
Aldehydes / Ketones |
Esters |
Grignard Reagents |
IR Spectroscopy |
Oxidation / Reduction |
Reactions |
Student-Centered Learning
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
A Pollutant Transformation Laboratory Exercise for Environmental Chemistry: The Reduction of Nitrobenzenes by Anaerobic Solutions of Humic Acid  Frank M. Dunnivant and Mark-Cody Reynolds
Presents a laboratory for advanced undergraduate- or graduate-level environmental chemistry in which students study the reduction of substituted nitrobenzenes by natural organic matter under anaerobic conditions. The exercise involves solution preparation, pH and EH buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis.
Dunnivant, Frank M.; Reynolds, Mark-Cody. J. Chem. Educ. 2007, 84, 315.
Instrumental Methods |
pH |
Solutions / Solvents |
Mechanisms of Reactions |
Kinetics |
Oxidation / Reduction
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Ethanol Metabolism and the Transition from Organic Chemistry to Biochemistry  Richard D. Feinman
Introducing alcohol dehydrogenase and aldehyde dehydrogenase reactions in organic chemistry to ease transition to biochemistry.
Feinman, Richard D. J. Chem. Educ. 2001, 78, 1215.
Metabolism |
Oxidation / Reduction |
Reactions |
Mechanisms of Reactions |
Alcohols |
Carbohydrates
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide  Martin Hulce and David W. Marks
Six representative alcohols are oxidized to the corresponding aldehyde or ketone, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Hulce, Martin; Marks, David W. J. Chem. Educ. 2001, 78, 66.
Catalysis |
Oxidation / Reduction |
Reactions |
Kinetics |
Chromatography |
Gas Chromatography |
Separation Science |
NMR Spectroscopy |
IR Spectroscopy |
Alcohols |
Phenols
Elucidation of Molecular Structure Using NMR Long-Range Coupling: Determination of the Single Isomer Formed in a Regiospecific Reaction  Samuel Delagrange and Françoise Nepveu
The experiment presented in this article introduces students to the main concepts of two essential NMR techniques for investigating molecular structure. Heteronuclear multiple bond connectivity (HMBC) and proton-coupled 13C NMR are used to determine which isomer, from a possible two, is formed by a regiospecific reaction. The demonstration, based on long-range coupling between quaternary carbons and protons on neighboring carbons, is presented step by step.
Delagrange, Samuel; Nepveu, Françoise. J. Chem. Educ. 2000, 77, 895.
Molecular Properties / Structure |
NMR Spectroscopy |
Synthesis |
Carboxylic Acids |
Reactions |
Diastereomers
Reduction of Carboxylic Acids with Sodium Borohydride and an Electrophile  Jan William Simek, Thad Tuck, and Kelly Courter Bush
Integration of new reduction conditions into a procedure applicable to the first-year organic chemistry laboratory, where reduction of the carboxylic acid group has remained an obstacle, notwithstanding the use of borane or LiAlH4 (2) on the microscale. The NaBH4 method with either electrophile can be modified to any scale; in our hands, the use of I2 as the electrophile performed better at the semimicro scale than the H2SO4 method.
Simek, Jan William; Tuck, Thad; Bush, Kelly Courter . J. Chem. Educ. 1997, 74, 107.
Carboxylic Acids |
Aromatic Compounds |
Oxidation / Reduction
The chemical logic of life and the earth's biosphere: A simple, one-diagram outline  Ochiai, Ei-Ichiro
This diagram is intended to give a compact overall picture of the chemical logic of life and of the earth's biosphere.
Ochiai, Ei-Ichiro J. Chem. Educ. 1992, 69, 356.
Acids / Bases |
Oxidation / Reduction
Electrochemistry of proton-coupled redox reactions: Role of the electrode surface.  Thorp, H. Holden.
In this article examples of the effects of the surface properties on a working electrode are explored.
Thorp, H. Holden. J. Chem. Educ. 1992, 69, 250.
Electrochemistry |
Oxidation / Reduction |
pH
Selective oxidation in the presence of a heterocycle  Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R.
The process of weighing the advantages and disadvantages of various oxidation methods are presented in this paper.
Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R. J. Chem. Educ. 1986, 63, 358.
Alcohols |
Aldehydes / Ketones |
Heterocycles |
Oxidation / Reduction |
Carboxylic Acids
Use of a new chemical reducing agent in the undergraduate organic laboratory  Kushner, Arthur S.; Vaccariello, Terry
Using sodium bis(2-methoxy-ethoxy)aluminum hydride as a reducing agent in the undergraduate organic laboratory.
Kushner, Arthur S.; Vaccariello, Terry J. Chem. Educ. 1973, 50, 154.
Laboratory Management |
Oxidation / Reduction
EDTA and complex formation  Johnston, M. B.; Bernard, A. J., Jr.; Flaschka, H. A.
It is the purpose of this paper to fill the void in chemistry texts regarding EDTA and its application to titrations in analytical chemistry, and to present some integrated experiments designed to serve as a general introduction to water-soluble chelates.
Johnston, M. B.; Bernard, A. J., Jr.; Flaschka, H. A. J. Chem. Educ. 1958, 35, 601.
Coordination Compounds |
Titration / Volumetric Analysis |
Quantitative Analysis |
Metals |
Oxidation / Reduction |
Precipitation / Solubility
Reduction with complex metal hydrides  Gaylord, Norman G.
Focusses on the use of lithium aluminum hydride, aluminum hydride, magnesium aluminum hydride, sodium aluminum hydride, sodium borohydride, potassium borohydride, lithium borohydride, and lithium gallium hydride as analytical reducing reagents.
Gaylord, Norman G. J. Chem. Educ. 1957, 34, 367.
Oxidation / Reduction |
Metals |
Reactions