TIGER

Journal Articles: 76 results
Experimental Design and Optimization: Application to a Grignard Reaction  Naoual Bouzidi and Christel Gozzi
This 5-week project, which systematically investigates optimizing the synthesis of benzyl-1-cyclopentan-1-ol, constitutes an initiation into research methodology and experimental design to prepare the student-engineer for an industry internship. Other pedagogical goals include experience in synthetic techniques, obtaining reproducible yields, and using quantitative analysis methods.
Bouzidi, Naoual; Gozzi, Christel. J. Chem. Educ. 2008, 85, 1544.
Addition Reactions |
Alcohols |
Aldehydes / Ketones |
Chemometrics |
Gas Chromatography |
Organometallics |
Synthesis
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited  Markus M. Hoffmann, Joshua T. Caccamis, Mark P. Heitz, and Kenneth D. Schlecht
Substantial modifications intended for a second- or third-year laboratory course in analytical chemistry are presented for a previously described procedure using NMR spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment introduces student collaboration to critically interpret a relatively large set of data.
Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D. J. Chem. Educ. 2008, 85, 1421.
Alcohols |
Aldehydes / Ketones |
Consumer Chemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Quantitative Analysis
The Baeyer–Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate  Richard A. Kjonaas and Anthony E. Clemons
Reports a method for carrying out the BaeyerVilliger oxidation of cyclopentanone to d-valerolactone in a large-section introductory organic chemistry laboratory course.
Kjonaas, Richard A.; Clemons, Anthony E. J. Chem. Educ. 2008, 85, 827.
Aldehydes / Ketones |
Esters |
NMR Spectroscopy |
Oxidation / Reduction |
Synthesis
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol  Bruce M. Branan, Joshua T. Butcher, and Lawrence R. Olsen
This organic laboratory involves the ozonolysis of eugenol (clove oil) followed by a reductive workup that generates an aldehyde easily identified by its NMR and IR spectra.
Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R. J. Chem. Educ. 2007, 84, 1979.
Aldehydes / Ketones |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Natural Products |
NMR Spectroscopy |
Synthesis |
Oxidation / Reduction
Determination of Solvent Effects on Keto—Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR  A. Gilbert Cook and Paul M. Feltman
Expands the classic physical chemistry experiment using of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents.
Cook, A. Gilbert; Feltman, Paul M. J. Chem. Educ. 2007, 84, 1827.
Aldehydes / Ketones |
Equilibrium |
Hydrogen Bonding |
Molecular Modeling |
Molecular Properties / Structure |
NMR Spectroscopy |
Solutions / Solvents |
Thermodynamics
Vanillin Synthesis from 4-Hydroxybenzaldehyde  Douglass F. Taber, Shweta Patel, Travis M. Hambleton, and Emma E. Winkel
Describes a simple and safe preparation of vanillin from 4-hydroxybenzaldehyde appropriate for undergraduate organic chemistry laboratories.
Taber, Douglass F.; Patel, Shweta; Hambleton, Travis M.; Winkel, Emma E. J. Chem. Educ. 2007, 84, 1158.
Aldehydes / Ketones |
Ethers |
Food Science |
Microscale Lab |
Natural Products |
Synthesis |
Thin Layer Chromatography |
Transition Elements
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
Using a Premade Grignard Reagent To Synthesize Tertiary Alcohols in a Convenient Investigative Organic Laboratory Experiment  Michael A. G. Berg and Roy D. Pointer
Describes the use of a commercially available Grignard reagent in a Grignard synthesis that avoided the failures typically associated with the Grignard reaction.
Berg, Michael A. G.; Pointer, Roy D. J. Chem. Educ. 2007, 84, 483.
Aldehydes / Ketones |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Organometallics |
Synthesis
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Synthesis of meso-Diethyl-2,2′-dipyrromethane in Water. An Experiment in Green Organic Chemistry  Abilio J. F. N. Sobral
In this laboratory activity, students are introduced to the synthesis of dipyrromethanes important precursors for porphyrin and calix[4]pyrrolethrough the acid-catalyzed condensation of pyrrole and 3-pentanone to produce meso-diethyl-2,2'-dipyrromethane.
Sobral, Abilio J. F. N. J. Chem. Educ. 2006, 83, 1665.
Aldehydes / Ketones |
Aqueous Solution Chemistry |
Green Chemistry |
Synthesis
Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory  Jacqueline Bennett, Kristen Meldi, and Christopher Kimmell II
In this experiment students prepare and analyze N-p-methoxyphenyl (N-PMP) alpha-imino ethyl glyoxalate, an imine that has been used in the synthesis of biologically active molecules. The stability and versatility of this imine allow it to be used in subsequent reactions, offering a variety of possible multistep synthetic strategies.
Bennett, Jacqueline; Meldi, Kristen; Kimmell, Christopher, II. J. Chem. Educ. 2006, 83, 1221.
Aldehydes / Ketones |
Gas Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis
Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot (Daucus carota) Bits  Silvana Ravía, Daniela Gamenara, Valeria Schapiro, Ana Bellomo, Jorge Adum, Gustavo Seoane, and David Gonzalez
Presents the enantioselective reduction of a ketone by crude plant parts, using carrot (Daucus carota) as the reducing agent.
Ravía, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David. J. Chem. Educ. 2006, 83, 1049.
Aldehydes / Ketones |
Biotechnology |
Catalysis |
Chromatography |
Green Chemistry |
Oxidation / Reduction |
Stereochemistry |
Separation Science
Reductive Amination: A Remarkable Experiment for the Organic Laboratory  Kim M. Touchette
The synthesis of N-(2-hydroxy-3-methoxybenzyl)-N-p-tolylacetamide is a fast, simple three-step sequence that serves as a useful example of the reductive amination reaction for the organic chemistry laboratory.
Touchette, Kim M. J. Chem. Educ. 2006, 83, 929.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Green Chemistry |
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Oxidation / Reduction |
Solids
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
An Improved Preparation of 2,4-Dinitrophenylhydrazine Reagent  Ben Ruekberg and Eric Rossoni
In the analysis of aldehydes and ketones (both for characterizing the functional group and identifying such compounds by the melting points of their derivatives), 2,4-dinitrophenylhydrazine reagent is often used. Of the several formulations of this reagent, the most popular uses sulfuric acid. The method involves making a paste of 2,4-dinitro-phenylhydrazine in concentrated sulfuric acid, dispersion of the paste in ethanol, addition of water, and the filtration of the reagent. This improvement uses milder conditions, which may obviate the need for the final filtration. Those responsible for preparation of stock reagent solutions for classes should note that this method facilitates scaling up the preparation.
Ruekberg, Ben; Rossoni, Eric. J. Chem. Educ. 2005, 82, 1310.
Aldehydes / Ketones |
Laboratory Equipment / Apparatus |
Laboratory Management
Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment  Sam H. Leung and Stephen A. Angel
In this experiment (E)- and (Z)-1-(4-bromophenyl)-2-phenylethene are synthesized by a solvent-free Wittig reaction. The reaction is effected by grinding the reactants in a mortar with a pestle. Both the E and Z isomers of the product are produced as evidenced by thin-layer chromatography and 1H NMR analysis. The E isomer is isolated by crystallization with ethanol in this experiment. In addition to learning about the Wittig reaction, students are also introduced to the ideas of mechanochemistry and green chemistry.
Leung, Sam H.; Angel, Stephen A. J. Chem. Educ. 2004, 81, 1492.
Chromatography |
Green Chemistry |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Reactions |
Aldehydes / Ketones |
Alkenes
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
Diastereoselective Synthesis of (+/-)-1,2-Diphenyl-1,2-propanediol. A Discovery-Based Grignard Reaction Suitable for a Large Organic Lab Course  James A. Ciaccio, Roxana P. Bravo, Antoinette L. Drahus, John B. Biggins, Rosalyn V. Concepcion, and David Cabrera
An experiment that probes the diastereoselectivity of the reaction between a Grignard reagent and a common, inexpensive alpha-chiral ketone; introduces students to pi-facial discrimination by having them establish the stereochemical course of kinetically controlled nucleophilic addition to a carbonyl.
Ciaccio, James A.; Bravo, Roxana P.; Drahus, Antoinette L.; Biggins, John B.; Concepcion, Rosalyn V.; Cabrera, David. J. Chem. Educ. 2001, 78, 531.
Mechanisms of Reactions |
Synthesis |
Organometallics |
Stereochemistry |
Grignard Reagents |
Aldehydes / Ketones
Vanillin (the author replies)  Hocking, Martin
Additional information regarding salicylic acid.
Hocking, Martin J. Chem. Educ. 1998, 75, 1203.
Aldehydes / Ketones |
Applications of Chemistry |
Medicinal Chemistry |
Molecular Properties / Structure
Vanillin  Calloway, Dean
Incorrect structural formula for methyl salicylate.
Calloway, Dean J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Letters  
Incorrect structural formula for methyl salicylate.
J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
An Aldehyde Derivative  J. Hodge Markgraf and Bo Yoon Choi
A system in which aldehydes are condensed with 1,2-benzenedimethylthiol in the presence of anhydrous ferric chloride on silica gel to give 3-substituted 1,5-dihyhdro-2,4-benzodithiepines. Melting points of the derivatives were taken as a means of identification of unknown compounds.
Markgraf, J. Hodge; Choi, Bo Yoon. J. Chem. Educ. 1998, 75, 222.
Aldehydes / Ketones |
Synthesis
Nucleophilic Addition vs. Substituion: A Puzzle for the Organic Laboratory  Ernest F. Silversmith
The chemistry of beta-carbonyl compounds is studied. Beta-carbonyl compounds react with hydrazines to give products with a 5-membered ring containing two nitrogens. The experiment makes students determine whether ethyl 2-acetyl-3-oxobutanoate reacts like a beta-diketone or like a beta-keto ester.
Silversmith, Ernest F. J. Chem. Educ. 1998, 75, 221.
Learning Theories |
Nucleophilic Substitution |
Aldehydes / Ketones |
Esters |
Mechanisms of Reactions
A Grignard-like Organic Reaction in Water  Gary W. Breton and Christine A. Hughey
A known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties.
Breton, Gary W.; Hughey, Christine A. J. Chem. Educ. 1998, 75, 85.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Alcohols |
Synthesis |
Mechanisms of Reactions
Determination of Formaldehyde in Cigarette Smoke  Jon W. Wong, Kenley K. Ngim, Jason P. Eiserich, Helen C. H. Yeo, Takayuki Shibamoto, and Scott A. Mabury
This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode).
Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A. J. Chem. Educ. 1997, 74, 1100.
Learning Theories |
Chromatography |
Quantitative Analysis |
Separation Science |
Aldehydes / Ketones |
Applications of Chemistry
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
A -78°C Sequential Michael Addition for the Organic Lab  Michael W. Tanis
This paper introduces a cold-temperature enolate alkylation reaction that can be performed safely and inexpensively by undergraduate students in approximately two 3-hour lab sessions.
Tanis, Michael W. J. Chem. Educ. 1997, 74, 112.
Addition Reactions |
Alkenes |
Aldehydes / Ketones |
Synthesis
Carbonyl and Conjugate Additions to Cyclohexenone: Experiments Illustrating Reagent Selectivity  Michael G. Organ and Paul Anderson
Undergraduate students leaving an organic chemistry program should have exposure to these concepts and hands-on experience in dealing practically with the issue of selectivity. In this paper, selective addition of a nucleophile to either end of the enone moiety in cyclohexenone is examined.
Organ, Michael G.; Anderson, Paul. J. Chem. Educ. 1996, 73, 1193.
Addition Reactions |
Aldehydes / Ketones |
Mechanisms of Reactions
Baeyer-Villiger Oxidation of Indane-1-ones: Monitoring of the Reaction by VPC and IR Spectroscopy  Elie Stephan
Procedure for the Baeyer-Villiger oxidation of indane-1-ones.
Stephan, Elie. J. Chem. Educ. 1995, 72, 1142.
IR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Oxidation / Reduction |
Aldehydes / Ketones
A Centenary Synthesis of Carone and Dicarvelone  Armstead, D. E. F.
Procedure for synthesizing carone and dicarvelone.
Armstead, D. E. F. J. Chem. Educ. 1995, 72, 550.
Synthesis |
Aldehydes / Ketones
Baker's Yeast Reduction of alpha-Diketones: A Four-Hour Experiment for Undergraduate Students  Besse, Pascale; Bolte, Jean; Veschambre, Henri
Procedure for quickly and efficiently reducing alpha-diketones using bakers' yeast.
Besse, Pascale; Bolte, Jean; Veschambre, Henri J. Chem. Educ. 1995, 72, 277.
Oxidation / Reduction |
Synthesis |
Aldehydes / Ketones
The Distribution of Cyclohexanone between Cyclohexane and Water  Worley, John D.
A microscale experiment that may be used to demonstrate extraction, spectrophotometric analysis, and the determination of a distribution constant.
Worley, John D. J. Chem. Educ. 1994, 71, A145.
Microscale Lab |
Aqueous Solution Chemistry |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Separation Science |
Spectroscopy
A More Affordable Undergraduate Experiment on the Reduction of Acetophenone by Yeast  Lee, Moses; Huntington, Martha
Preparation of Mosher's esters through the reduction of acetophenone with baker's yeast.
Lee, Moses; Huntington, Martha J. Chem. Educ. 1994, 71, A62.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Oxidation / Reduction |
Stereochemistry |
Chirality / Optical Activity |
Esters |
Synthesis
Synthesis and Spectroscopic Study of Plant Growth Regulators Phenylpyridylureas: An "Agrorganic" Undergraduate Laboratory Experiment  Hocquet, Alexandre; Tohier, Jacques; Fournier, Josette
This lab could represent an undergraduate comparative synthesis and analysis of biologically active molecules, suitable for an introductory lab session.
Hocquet, Alexandre; Tohier, Jacques; Fournier, Josette J. Chem. Educ. 1994, 71, 1092.
Agricultural Chemistry |
Drugs / Pharmaceuticals |
Aldehydes / Ketones |
Aromatic Compounds |
Synthesis
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
A new method for the oxidation of 4-phenylurazole to 4-phenyltriazolinedione.  Mallakpour, Shadpour E.
The procedures describe the synthesis of 4-phenyl-urazole from ethyl carbazate and then the oxidation of the urazole with NO2-N2O4 to yield 4-phenyl-1,2,4-trizoline-3,5-dione.
Mallakpour, Shadpour E. J. Chem. Educ. 1992, 69, 238.
Oxidation / Reduction |
Aldehydes / Ketones |
Synthesis |
Aromatic Compounds
Beta-keto esters from tin(II) chloride catalyzed reactions of aldehydes with ethyl diazoacetate: An undergraduate laboratory experiment drawn from the current literature  Brockwell, Joyce C.; Holmquist, Christopher R.
This is an experimental procedure for producing longer-chain keto esters from unconjugated aldehydes on reaction with ethyl diazoacetate catalyzed by Lewis acids for use in an undergraduate laboratory.
Brockwell, Joyce C.; Holmquist, Christopher R. J. Chem. Educ. 1992, 69, 68.
Catalysis |
Synthesis |
Lewis Acids / Bases |
Aldehydes / Ketones |
Esters
The water solubility of 2-butanol: A widespread error  Alger, Donald B.
There seems to be widespread misreporting of the solubility of 2-butanol. This misreporting is an example of the importance of consulting original sources.
Alger, Donald B. J. Chem. Educ. 1991, 68, 939.
Alcohols |
Aldehydes / Ketones |
Precipitation / Solubility
The malonic ester synthesis in the undergraduate laboratory  Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D.
The versatile reactions of diethyl malonate represent an important lecture topic in introductory organic courses, but are only rarely performed in the lab because of several problems associated with performing these reactions. These authors present a lab the circumvents some of the typical problems.
Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D. J. Chem. Educ. 1991, 68, 689.
Aromatic Compounds |
Aldehydes / Ketones |
Amino Acids |
Heterocycles |
Amides
The synthesis of 2-methyl-4-heptanone  de Jong, Elma A.; Feringa, Ben L.
2-methyl-4-heptanone is an ant pheromone used to alarm fellow ants. The synthesis described in this article is greeted with interest by students.
de Jong, Elma A.; Feringa, Ben L. J. Chem. Educ. 1991, 68, 71.
Aldehydes / Ketones |
Natural Products |
Synthesis |
Grignard Reagents
A One-Step Synthesis of Cinnamic Acids Using Malonic Acid: The Verley-Doebner Modification of the Knoevenagel Condensation  Kolb, Kenneth E.; Field, Kurt W.; Schatz, Paul F.
With this procedure malonic acid itself, rather than its diester, can be effectively condensed with benzaldehyde to produce trans-cinnamic acid.
Kolb, Kenneth E.; Field, Kurt W.; Schatz, Paul F. J. Chem. Educ. 1990, 67, A304.
Microscale Lab |
Synthesis |
Acids / Bases |
Aromatic Compounds |
Aldehydes / Ketones |
Carboxylic Acids
Synthesis of 5-nitrofurfural diacetate and 5-nitrofurfural semicarbazone: An undergraduate laboratory experiment  Li, Xiaorong; Liu, Qianguang; Chang, James C.
Demonstrates how to nitrate an aromatic compound having an aldehyde group that can be oxidized by nitrating agents.
Li, Xiaorong; Liu, Qianguang; Chang, James C. J. Chem. Educ. 1990, 67, 986.
Synthesis |
Aldehydes / Ketones |
Esters |
Ethers |
Electrophilic Substitution |
Aromatic Compounds |
NMR Spectroscopy
Synthesis of a phenol-formaldehyde thermosetting polymer  Bedard, Y.; Riedl, B.
Procedure that allows for the synthesis of a 50% aqueous solution of a prepolymer that, with the proper application of heat and pressure, can be used to bind together wood or other materials.
Bedard, Y.; Riedl, B. J. Chem. Educ. 1990, 67, 977.
Synthesis |
Aldehydes / Ketones |
Phenols |
Polymerization
The palladium-catalyzed oxidation of 2-vinylnaphthalene: A microscale organic synthesis experiment   Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R.
The Wacker oxidation experiment as described is cost-efficient due to the small scale employed, and is a valuable addition to the undergraduate organic curriculum.
Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R. J. Chem. Educ. 1990, 67, 340.
Microscale Lab |
Synthesis |
Alkynes |
Aldehydes / Ketones |
Oxidation / Reduction
Photochemistry of phenyl alkyl ketones: The "Norrish type II" photoreaction: An organic photochemistry experiment   Marciniak, Bronislaw
In this paper a student laboratory experiment is described aimed to study the "Norrish type II" reception of valerophenone. The advantage of this experiment is that it can be performed with a simple irradiation system and with a gas chromatograph and it brings students into contact with some problems of organic photochemistry.
Marciniak, Bronislaw J. Chem. Educ. 1988, 65, 832.
Aldehydes / Ketones |
Photochemistry |
Phenols |
Chromatography
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
Example of the Robinson annulation procedure via phase transfer catalysis a beginning organic synthesis experiment  Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D.
A brief description of the procedure.
Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D. J. Chem. Educ. 1988, 65, 637.
Catalysis |
Aromatic Compounds |
Synthesis |
Aldehydes / Ketones
A conversion of methyl ketones into acetylenes: A project for a problem oriented or microscale organic chemistry course  Silveira, Augustine, Jr.; Orlando, Steven C.
The authors present their adaptation of an open-ended project on the conversion of methyl ketones into acetylenes for the microscale lab and describe its pedagogic utility.
Silveira, Augustine, Jr.; Orlando, Steven C. J. Chem. Educ. 1988, 65, 630.
Microscale Lab |
Aldehydes / Ketones |
Synthesis |
Nucleophilic Substitution |
Gas Chromatography
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
A problem involving organic qualitative analysis  Silvert, D. J.
Five different organic compounds are to be identified from the result of three simple qualitative tests on each unknown (dichromate, DNPH, and iodoform tests).
Silvert, D. J. J. Chem. Educ. 1987, 64, 971.
Qualitative Analysis |
Alcohols |
Aldehydes / Ketones
Tollens's test, fulminating silver, and silver fulminate  Jenkins, Ian D.
Preparation, application, and misinformation regarding Tollens's test for aldehydes and reducing sugars.
Jenkins, Ian D. J. Chem. Educ. 1987, 64, 164.
Aldehydes / Ketones |
Carbohydrates |
Qualitative Analysis |
Laboratory Management
A visual manifestation of the Norrish Type I reaction: The cyclohexanone sunburn dosimeter  Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M.
Irradiation of aqueous cyclohexanone solutions produces hex-5-enal and butylketene; the latter reacts with water to form caproic acid, which lowers the pH of the solution and thus can be used to measure the progress of the reaction.
Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M. J. Chem. Educ. 1987, 64, 84.
Photochemistry |
pH |
Aldehydes / Ketones
Michael addition and aldol condensation: A simple teaching model for organic laboratory  Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R.
Three experiments are presented in this paper: Michael addition; Michael addition followed by aldol addition; and Michael addition followed by aldol condensation.
Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R. J. Chem. Educ. 1986, 63, 443.
Addition Reactions |
Aldehydes / Ketones |
Alcohols
Oxidation of alcohols using calcium hypochlorite and solid/liquid phase-transfer catalysis  Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L.
Includes synthesis of an aldehyde from a primary alcohol as well as several ketones from secondary alcohols.
Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L. J. Chem. Educ. 1984, 61, 1118.
Alcohols |
Oxidation / Reduction |
Catalysis |
Aldehydes / Ketones |
Synthesis
The subjection of glutaraldehyde to the Fehling test and to the corrected Benedict test  Hill, William D., Jr.
The molecular and ionic redox equations with respect to the Fehling and Benedict tests (corrected with respect to glutaraldehyde).
Hill, William D., Jr. J. Chem. Educ. 1984, 61, 1085.
Qualitative Analysis |
Aldehydes / Ketones
Acetaldehyde: a chemical whose fortunes have changed  Wittcoff, Harold A.
Acetaldehyde is an example of a chemical whose use is declining because chemists have replaced it with superior chemicals.
Wittcoff, Harold A. J. Chem. Educ. 1983, 60, 1044.
Aldehydes / Ketones |
Applications of Chemistry
A phase transfer catalyzed permanganate oxidation: preparation of vanillin from isoeugenol acetate  Lampman, Gary M.; Sharpe, Steven D.
There are several attractive features in this reaction sequence for the undergraduate laboratory. These include (1) use of a protecting acetate group, (2) use of a familiar "textbook" oxidant, potassium permanganate, (3) use of phase transfer catalyst, (4) preparing of an aldehyde, (5) short reaction period, and (6) the laboratory has a pleasant aroma.
Lampman, Gary M.; Sharpe, Steven D. J. Chem. Educ. 1983, 60, 503.
Oxidation / Reduction |
Catalysis |
Natural Products |
Synthesis |
Aldehydes / Ketones |
Alcohols |
Aromatic Compounds
Diphenylbutadienes syntheses by means of the Wittig reaction: Experimental introduction to the use of phase transfer catalysis  Gillois, J.; Guillerm, G.; Stephen, E.; Vo-Quang, L.
Intended as a project carried out by students at the end of introductory organic chemistry.
Gillois, J.; Guillerm, G.; Stephen, E.; Vo-Quang, L. J. Chem. Educ. 1980, 57, 161.
Synthesis |
Catalysis |
Alkenes |
Aldehydes / Ketones |
Stereochemistry
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Lipids
Aqueous chromic acid oxidation of secondary alcohols in diethyl ether: A convenient undergraduate organic chemistry experiment  Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M.
A two-phase procedure for the oxidation of secondary alcohols to ketones that is applicable to a wide variety of substrates.
Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M. J. Chem. Educ. 1979, 56, 203.
Aqueous Solution Chemistry |
Oxidation / Reduction |
Alcohols |
Ethers |
Synthesis |
Aldehydes / Ketones
Favorskii rearrangement in bridged polycyclic compounds  Chenier, Philip J.
Favorskii rearrangement in bridged polycyclic compounds: This can be classified as an intramolecular rearrangement from carbon to carbon, involving a migrating group Z moving without its electrons from migrating origin A to an electron-rich terminus B.
Chenier, Philip J. J. Chem. Educ. 1978, 55, 286.
Mechanisms of Reactions |
Carboxylic Acids |
Aldehydes / Ketones |
Aromatic Compounds
Classification test for aldehydes involving phase transfer catalysis  Durst, H. Dupont; Gokel, George W.
Although common spectroscopic methods have largely supplanted the more classical methods for distinguishing aldehydes from ketones in many applications, aldehyde classification tests remain very useful in actual laboratory practice as well as important pedagogical device in qualitative organic chemistry.
Durst, H. Dupont; Gokel, George W. J. Chem. Educ. 1978, 55, 206.
Aldehydes / Ketones |
Qualitative Analysis
Synthesis of 4-methyl-3-heptanol and 4-methyl-3-heptanone. Two easily synthesized insect pheromones  Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S.
A two step reaction sequence involving the Grignard synthesis of an alcohol followed by oxidation of this alcohol to the corresponding ketone.
Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S. J. Chem. Educ. 1977, 54, 382.
Natural Products |
Synthesis |
Applications of Chemistry |
Grignard Reagents |
Mechanisms of Reactions |
Stereochemistry |
Alcohols |
Aldehydes / Ketones
Preparation of phenanthridone. A multipurpose experiment for the organic laboratory  Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G.
It is desirable to have a series of multipurpose reactions available which can illustrate a variety of reaction types within a single, three hour lab period.
Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G. J. Chem. Educ. 1976, 53, 398.
Reactions |
Aromatic Compounds |
Aldehydes / Ketones
A crossed aldol condensation for the undergraduate laboratory  Angres, Isaac; Zieger, Herman E.
This two-step experiment for undergraduate organic chemistry students illustrates three basic ideas: organic chemistry students illustrate three basic ideas (1) crossed aldol condensation; (2) the acidity of benzylic hydrogen in hydrocarbons; and (3) reduction of a double bond in hydride transfer.
Angres, Isaac; Zieger, Herman E. J. Chem. Educ. 1974, 51, 64.
Aromatic Compounds |
Aldehydes / Ketones |
Acids / Bases |
Alcohols
Molecular weight determination of aldehydes and ketones. A quantitative organic experiment  Steinhaus, Ralph K.
The reaction between semicarbazide and an unknown ketone is used to determine molecular weight.
Steinhaus, Ralph K. J. Chem. Educ. 1973, 50, 293.
Physical Properties |
Quantitative Analysis |
Aldehydes / Ketones |
Oxidation / Reduction
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Preparation of 2,3-diphenyl-1-indenone and related compounds  Clark, Thomas J.
The author describes a series of preparative experiments which students in organic chemistry have found enjoyable and instructive.
Clark, Thomas J. J. Chem. Educ. 1971, 48, 554.
Synthesis |
Aldehydes / Ketones |
Aromatic Compounds
Hazardous chemicals data  National Fire Protection Association
Explains aspects of chemical hazard data and presents hazards associated with acetaldehyde.
National Fire Protection Association J. Chem. Educ. 1968, 45, A115.
Chemometrics |
Aldehydes / Ketones |
Laboratory Management
Hydration of an alkyne: Undergraduate organic chemistry experiment  Rose, Norman C.
The hydration of 2-methyl-3-butyn-2-ol to yield 3-hydroxy-3-methyl-2-butanone is a very suitable reaction for undergraduates who have had little prior experience in the organic laboratory.
Rose, Norman C. J. Chem. Educ. 1966, 43, 324.
Alkynes |
Aldehydes / Ketones |
Alcohols
The formation of acetone from acetates  Young, Jay A.; Taylor, John K.
Suggests some research activities based on an article published previously in the Journal.
Young, Jay A.; Taylor, John K. J. Chem. Educ. 1962, 39, A962.
Undergraduate Research |
Aldehydes / Ketones |
Reactions
A synthesis of bis(p-aminophenyl) sulfone for laboratory classes  Buckles, Robert E.
A three-step synthesis of bis(p-aminophenyl) sulfone from p-chloronitrobenzene has been devised on a fairly small scale for laboratory classes in beginning organic chemistry.
Buckles, Robert E. J. Chem. Educ. 1954, 31, 36.
Synthesis |
Aldehydes / Ketones