TIGER

Journal Articles: 13 results
The IUPAC Rules for Naming Organic Molecules  Stanislaw Skonieczny
A systematic approach to naming polyfunctional organic compounds is presented. Latest IUPAC rules are incorporated and the table of order of precedence for the major functional groups is assembled.
Skonieczny, Stanislaw. J. Chem. Educ. 2006, 83, 1633.
Nomenclature / Units / Symbols
Organic Acids without a Carboxylic Acid Functional Group  G. V. Perez and Alice L. Perez
This paper presents several organic molecules that have been labeled as acids but do not contain a carboxylic acid functional group. Various chemical principles such as pKa, tautomerization, aromaticity, conformation, resonance, and induction are explored.
Perez, G. V.; Perez, Alice L. J. Chem. Educ. 2000, 77, 910.
Acids / Bases |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Phenols |
Carboxylic Acids |
Aromatic Compounds
A Simple and Convenient Method for Generation and NMR Observation of Stable Carbanions  Hamid S. Kasmai
A simple and convenient method for the generation and NMR study of stable carbanions is described. The data and sample spectra illustrate that reliable and good quality NMR spectra of stable carbanions may be obtained. The experiments described provide a good opportunity for students to apply the basic principles of 1H and 13C NMR spectrometry and the interesting topic of the exchange phenomenon in NMR.
Kasmai, Hamid S. J. Chem. Educ. 1999, 76, 830.
Acids / Bases |
Reactive Intermediates |
NMR Spectroscopy |
Aromatic Compounds
Microscale reactions of vanillin   Fowler, Rosemary G.
In this paper five microscale experiments which allow first-year organic student sot study the properties and reactions of vanillin are presented.
Fowler, Rosemary G. J. Chem. Educ. 1992, 69, A43.
Aldehydes / Ketones |
Aromatic Compounds |
Phenols |
Microscale Lab |
IR Spectroscopy |
NMR Spectroscopy
The malonic ester synthesis in the undergraduate laboratory  Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D.
The versatile reactions of diethyl malonate represent an important lecture topic in introductory organic courses, but are only rarely performed in the lab because of several problems associated with performing these reactions. These authors present a lab the circumvents some of the typical problems.
Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D. J. Chem. Educ. 1991, 68, 689.
Aromatic Compounds |
Aldehydes / Ketones |
Amino Acids |
Heterocycles |
Amides
Microscale synthesis of heterocyclic compounds   Al-awar, Rima; Wahl, George H., Jr.
The authors describe microscale syntheses of four heterocyclic compounds for which large-scale versions were described previously in this Journal.
Al-awar, Rima; Wahl, George H., Jr. J. Chem. Educ. 1990, 67, 265.
Microscale Lab |
Heterocycles |
Esters |
Aromatic Compounds |
Synthesis
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
Preparation of phenanthridone. A multipurpose experiment for the organic laboratory  Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G.
It is desirable to have a series of multipurpose reactions available which can illustrate a variety of reaction types within a single, three hour lab period.
Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G. J. Chem. Educ. 1976, 53, 398.
Reactions |
Aromatic Compounds |
Aldehydes / Ketones
Imidazole - Versatile today, prominent tomorrow  Matuszak, C. A.; Matuszak, A. J.
Imidazole chemistry has pedagogical utility for all the organic chemistry students pursing careers in the life sciences.
Matuszak, C. A.; Matuszak, A. J. J. Chem. Educ. 1976, 53, 280.
Grignard Reagents |
Aromatic Compounds |
Heterocycles |
Phenols |
Acids / Bases |
Catalysis |
Coordination Compounds |
Hydrogen Bonding
Use of enclosing marks and letters  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes how parentheses, brackets, braces, and letters are used in nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 253.
Nomenclature / Units / Symbols
Teaching aromatic substitution: A molecular orbital approach  Meislich, Herbert
This paper presents a way of teaching aromatic substitution using the concepts of alternate polarity and electron delocalization through extended pi-bonding.
Meislich, Herbert J. Chem. Educ. 1967, 44, 153.
Aromatic Compounds |
MO Theory |
Nucleophilic Substitution |
Covalent Bonding |
Molecular Properties / Structure
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
The contributions of Fritz Arndt to resonance theory  Campaigne, E.
Examines the contribution of Fritz Arndt to resonance theory and his work regarding the nature of bonds in pyrone ring systems.
Campaigne, E. J. Chem. Educ. 1959, 36, 336.
Resonance Theory |
Aromatic Compounds |
Covalent Bonding