TIGER

Journal Articles: 75 results
A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides  Edward M. Treadwell and Tung-Yin Lin
An experiment is described involving the nitration of ortho or meta, monosubstituted benzoic acids and monochlorinated acetanilides with nitric acid to evaluate the regioselectivity of addition through computational methods and 1H NMR spectroscopy.
Treadwell, Edward M.; Lin, Tung-Yin. J. Chem. Educ. 2008, 85, 1541.
Aromatic Compounds |
Computational Chemistry |
Electrophilic Substitution |
Molecular Modeling |
NMR Spectroscopy |
Synthesis
Six Pillars of Organic Chemistry  Joseph J. Mullins
This article focuses on a core set of conceptselectronegativity, polar covalent bonding, inductive and steric effects, resonance, and aromaticitythe proper application of which can explain and predict a wide variety of chemical, physical, and biological properties of molecules and conceptually unite important features of general, organic, and biochemistry.
Mullins, Joseph J. J. Chem. Educ. 2008, 85, 83.
Bioorganic Chemistry |
Covalent Bonding |
Hydrogen Bonding |
Mechanisms of Reactions |
Periodicity / Periodic Table |
Reactive Intermediates |
Resonance Theory
Zeroing In on Electrophilic Aromatic Substitution  David C. Forbes, Mohini Agarwal, Jordan L. Ciza, and Heather A. Landry
Presents a unique and novel illustration of reactivity trends in the formation of trisubstituted benzene derivatives from disubstituted systems using electrophilic aromatic substitution reactions.
Forbes, David C.; Agarwal, Mohini; Ciza, Jordan L.; Landry, Heather A. J. Chem. Educ. 2007, 84, 1878.
Aromatic Compounds |
Constitutional Isomers |
Electrophilic Substitution |
Reactions
Discovering Electronic Effects of Substituents in Nitrations of Benzene Derivatives Using GC–MS Analysis  Malgorzata M. Clennan and Edward L. Clennan
Describes an organic lab in which students pool mass spectral data to identify the distribution of isomer products generated by the nitration of six benzene derivatives whose substituents differ in their electronic effects. Students also determine which substituents direct nitration predominantly to the ortho- or para- and to the meta positions.
Clennan, Malgorzata M.; Clennan, Edward L. J. Chem. Educ. 2007, 84, 1679.
Aromatic Compounds |
Constitutional Isomers |
Electrophilic Substitution |
Gas Chromatography |
Mass Spectrometry
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Competitive Nitration of Benzene–Fluorobenzene and Benzene–Toluene Mixtures: Orientation and Reactivity Studies Using HPLC  Ronald L. Blankespoor, Stephanie Hogendoorn, and Andrea Pearson
In this experiment for the first-year organic laboratory, mixtures of benzenetoluene and benzenefluorobenzene are competitively nitrated to determine the reactivity and orientation effects of CH3 and F. HPLC is used to analyze the reaction mixtures.
Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea. J. Chem. Educ. 2007, 84, 697.
Aromatic Compounds |
Constitutional Isomers |
Electrophilic Substitution |
HPLC
Quantitative Thermodynamic Descriptions of Aromaticity. A Computational Exercise for the Organic Chemistry Laboratory  Terrence Gavin
This article describes an exercise that enables students to establish a quantitative scale of aromaticity via computer-driven quantum mechanical calculations using Spartan software. The method utilizes a group of analogous isodesmic reactions from which the energy difference between two isomeric cyclic polyenes is calculated from their optimized geometries. The energy differences found are used to characterize structures as aromatic, nonaromatic, or antiaromatic depending on the value obtained. A representative group of structures, including hydrocarbons, hydrocarbon ions, and heterocycles are studied.
Gavin, Terrence. J. Chem. Educ. 2005, 82, 953.
Aromatic Compounds |
Computational Chemistry |
Heterocycles |
Molecular Modeling |
Thermodynamics
Microscale Synthesis and Spectroscopic Analysis of Flutamide, an Antiandrogen Prostate Cancer Drug  Ryan G. Stabile and Andrew P. Dicks
The synthesis involves N-acylation of a trisubstituted aromatic compound, 3-trifluoromethyl-4-nitroaniline. The procedure is easily adapted to generate structural analogues of flutamide. A significant feature is the curricular flexibility afforded by this experiment.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1439.
Drugs / Pharmaceuticals |
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds
Using Hydrocarbon Acidities To Demonstrate Principles of Organic Structure and Bonding  Andrew P. Dicks
This article demonstrates the utility of hydrocarbon acidity as a teaching tool within the undergraduate classroom. Acidities of compounds containing only hydrogen and carbon vary by at least 50 orders of magnitude. Differences in acidities are rationalized by invoking principles of hybridization, resonance, induction, and aromaticity.
Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1322.
Acids / Bases |
Aromatic Compounds |
Alkanes / Cycloalkanes
The Anomalous Reactivity of Fluorobenzene in Electrophilic Aromatic Substitution and Related Phenomena  Joel Rosenthal and David I. Schuster
Extensive analysis of the reactivity of fluorobenzene (electrophilic substitution); includes resonance and other inductive effects, acidities of fluorinated aromatic compounds, and properties of other organofluorine compounds.
Rosenthal, Joel; Schuster, David I. J. Chem. Educ. 2003, 80, 679.
Aromatic Compounds |
Mechanisms of Reactions |
Synthesis |
Electrophilic Substitution |
Enrichment / Review Materials |
Resonance Theory
A New Approach to Understanding Oxidation-Reduction of Compounds in Organic Chemistry  Abdullah Menzek
Teaching oxidation-reduction in introductory organic chemistry.
Menzek, Abdullah. J. Chem. Educ. 2002, 79, 700.
Aromatic Compounds |
Oxidation / Reduction |
Oxidation State
The Mechanism of Aqueous Hydrolysis of Nitro Derivatives of Phenyl Phenylmethanesulfonate. An Organic Laboratory Experiment  S. D. Mulder, B. E. Hoogenboom, and A. G. Splittgerber
Synthesis, purification, and characterization of three esters.
Mulder, S. D.; Hoogenboom, B. E.; Splittgerber, A. G. J. Chem. Educ. 2002, 79, 218.
Mechanisms of Reactions |
Molecular Properties / Structure |
Resonance Theory |
Reactive Intermediates |
Equilibrium |
Esters |
Aromatic Compounds |
Brønsted-Lowry Acids / Bases
Effect of Anisotropy on the Chemical Shift of Vinyl Protons in trans- and cis-1,2-Dibenzoylethylenes. A Small-Group or Recitation Activity  Roosevelt Shaw, David Roane, and Sean Nedd
Procedure to help students explain chemical shift differences for vinyl protons in alkene diastereomers.
Shaw, Roosevelt; Roane, David; Nedd, Sean. J. Chem. Educ. 2002, 79, 67.
Magnetic Properties |
NMR Spectroscopy |
Undergraduate Research |
Diastereomers |
Aromatic Compounds |
Alkenes |
Photochemistry |
Molecular Properties / Structure
The Bullvalene Story. The Conception of Bullvalene, a Molecule That Has No Permanent Structure  Addison Ault
Properties and chemistry of bullvalene, C10H10, a hydrocarbon with no permanent carbon-carbon bonds.
Ault, Addison. J. Chem. Educ. 2001, 78, 924.
Molecular Properties / Structure |
Aromatic Compounds
Determination of the Regiochemistry of Disubstituted Arenes Generated by Addition of a Carbanion to the (h6-Anisole)Cr(CO)3 Complex  Ashfaq A. Bengali, Cindy Samet, and Samantha B. Charlton
A laboratory activity that integrates fundamental concepts of organic and organometallic chemistry and then employs standard instrumental techniques (GC) and molecular modeling to justify the results.
Bengali, Ashfaq A.; Samet, Cindy; Charlton, Samantha B. J. Chem. Educ. 2001, 78, 68.
Aromatic Compounds |
Synthesis |
Organometallics |
Gas Chromatography |
Molecular Modeling
The Discovery Approach to NMR: Development of Chemical-Shift Additivity Tables and Application to Product Identification  Eric Bosch
A discovery-based approach to the preparation and application of chemical-shift additivity tables is presented to give students insight into the development of NMR spectral prediction software.
Bosch, Eric. J. Chem. Educ. 2000, 77, 890.
Laboratory Computing / Interfacing |
NMR Spectroscopy |
Aromatic Compounds |
Molecular Properties / Structure
Keep Going with Cyclooctatetraene!  Addison Ault
This paper shows how some simple properties of cyclooctatetraene can indicate important ideas about the structure of cyclooctatetraene.
Ault, Addison. J. Chem. Educ. 2000, 77, 55.
Aromatic Compounds |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Comments on the Treatment of Aromaticity and Acid-Base Character of Pyridine and Pyrrole in Contemporary Organic Chemistry Textbooks  Hugh J. Anderson and Ludwig Bauer
Presentations of aromaticity and acid-base character of pyridine and pyrrole in 18 contemporary organic chemistry textbooks were surveyed.
Anderson, Hugh J.; Bauer, Ludwig. J. Chem. Educ. 1999, 76, 1151.
Acids / Bases |
Aromatic Compounds
Photodimerization of Anthracene  Gary W. Breton and Xoua Vang
The laboratory experiment of the photodimerization of anthracene is given.
Breton, Gary W.; Vang, Xoua. J. Chem. Educ. 1998, 75, 81.
Photochemistry |
UV-Vis Spectroscopy |
Aromatic Compounds |
Synthesis
Making Organic Concepts Visible  Robert S. H. Liu and Alfred E. Asato
Graphic illustrations, with a Hawaiian flavor, have been introduced to clarify the following concepts encountered in introductory organic chemistry: functional groups, resonance structures, polarizability, ionization in mass spectroscopy and difference in reactivities between alkyl and vinyl halides
Liu, Robert S. H.; Asato, Alfred E. J. Chem. Educ. 1997, 74, 783.
Mechanisms of Reactions |
Resonance Theory
Resonance Analogy Using Cartoon Characters  Starkey, Ronald
Using Charlie Brown and Dennis the Menace as an analogy for resonance hybrids (specifically benzene).
Starkey, Ronald J. Chem. Educ. 1995, 72, 542.
Covalent Bonding |
Aromatic Compounds |
Molecular Properties / Structure
An Attention-Getting Model for Atomic Orbitals  Kiefer, Edgar F.
Tapping a spoon on a coffee mug to illustrate the circular orbitals of benzene.
Kiefer, Edgar F. J. Chem. Educ. 1995, 72, 500.
MO Theory |
Aromatic Compounds
Isomers of Benzene  Gutman, I.; Potgieter, J. H.
Summary of isomers and valence isomers of benzene.
Gutman, I.; Potgieter, J. H. J. Chem. Educ. 1994, 71, 222.
Aromatic Compounds |
Diastereomers |
Covalent Bonding
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
Don't stop with benzene! The educational value of the cyclooctatetraene (C8H8) molecule  Samet, Cindy
Educators often ignore larger molecular ring systems, suggesting to students that benzene covers all the important aspects of the chemistry of annulenes.
Samet, Cindy J. Chem. Educ. 1993, 70, 291.
Aromatic Compounds
Davidsoniana Jones and the cult of the curved arrow  Brisbois, Ronald G.
Puzzles to help students understand valence bond theory, resonance, and tautomerism.
Brisbois, Ronald G. J. Chem. Educ. 1992, 69, 971.
Resonance Theory
A new approach to the generation of sigma complex structures  Young, Joseph G.
An alternative to the electron pushing approach for determining intermediate resonance structures for electrophilic aromatic substitutions.
Young, Joseph G. J. Chem. Educ. 1990, 67, 550.
Aromatic Compounds |
Electrophilic Substitution |
Resonance Theory |
Mechanisms of Reactions
An effective and facile demonstration of organic photochemistry  Brown, Trevor M.; Dronsfield, Alan T.; Cooksey, Christopher J.; Crich, David
The number of experiments that illustrate photochemically induced change and are suitable for student use is limited. The photolysis experiment described here is carried out very quickly using tungsten-filament lamp irradiation.
Brown, Trevor M.; Dronsfield, Alan T.; Cooksey, Christopher J.; Crich, David J. Chem. Educ. 1990, 67, 434.
Photochemistry |
Aromatic Compounds
ESR studies and HMO calculations on benzosemiquinone radical anions: A physical chemistry experiment  Beck, Rainer; Nibler, Joseph W.
For this laboratory study, several benzosemiquinone radical anions were chosen since they are long-lived and are easily made from inexpensive source materials. The effects of molecular symmetry and of different substituents attached to the aromatic ring system are also readily seen.
Beck, Rainer; Nibler, Joseph W. J. Chem. Educ. 1989, 66, 263.
Spectroscopy |
MO Theory |
Aromatic Compounds
The correlation of multinuclear spectral data for selectively fluorinated organic compounds  Everett, T. Stephen
This article presents a general discussion of fluorine-19 NMR spectroscopy, spectral data for two series of selectively fluorinated compounds, and the detailed correlation of multinuclear data for one specific compound.
Everett, T. Stephen J. Chem. Educ. 1988, 65, 422.
Aromatic Compounds |
NMR Spectroscopy |
Isotopes
Molecular vibration demonstrations  Turrell, George; Demol, Robert
Two dynamic models that illustrate the normal-mode vibrations of the water and benzene molecules.
Turrell, George; Demol, Robert J. Chem. Educ. 1987, 64, 1025.
Group Theory / Symmetry |
Water / Water Chemistry |
Aromatic Compounds |
Molecular Properties / Structure |
Molecular Modeling
Teaching the concept of resonance with transparent overlays  Richardson, W. S.
The overlap method can be useful in the development of the concept of a partial charge on the atoms of an ion.
Richardson, W. S. J. Chem. Educ. 1986, 63, 518.
Resonance Theory |
Molecular Properties / Structure
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
The evaluation of strain and stabilization in molecules using isodesmic reactions  Fuchs, Richard
The stabilities of cyclic hydrocarbons are analyzed using isodesmic and metathetical isodesmic reactions.
Fuchs, Richard J. Chem. Educ. 1984, 61, 133.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds
The synthesis of 4,6,8-trimethylazulene: an organic laboratory experiment  Garst, Michael E.; Hochlowski, Jill; Douglass, III, James G.; Sasse, Scott
A procedure for a two-step synthesis of 4,6,8-trimethylazulene.
Garst, Michael E.; Hochlowski, Jill; Douglass, III, James G.; Sasse, Scott J. Chem. Educ. 1983, 60, 510.
Synthesis |
Heterocycles |
Aromatic Compounds |
Resonance Theory |
Chromatography
The misuse of the circle notation to represent aromatic rings  Belloli, Robert C.
This chemistry educator has noticed confusion and erroneous conclusions resulting from the overuse and misuse of the circle notation to represent aromaticity in polycyclic aromatic hydrocarbons.
Belloli, Robert C. J. Chem. Educ. 1983, 60, 190.
Aromatic Compounds |
Molecular Properties / Structure
Nitration of naphthol: A laboratory experiment  Mowery, Dwight F.
The nitration of beta-naphthol to produce pyrotechnic snakes and the nitration of alpha-naphthol to produce Martius yellow dye.
Mowery, Dwight F. J. Chem. Educ. 1982, 59, 689.
Aromatic Compounds
A novel bomb calorimetric determination of the resonance energy of benzene  Pickering, Miles
Improvements to an earlier experimental procedure.
Pickering, Miles J. Chem. Educ. 1982, 59, 318.
Aromatic Compounds
Structure-resonance theory for pericyclic transition states  Herndon, William C.
The purpose of this article is to show that structure-resonance theory can be used to understand the effects of structure or substituents on the rates of thermal pericyclic reactions.
Herndon, William C. J. Chem. Educ. 1981, 58, 371.
Aromatic Compounds |
Resonance Theory |
Molecular Properties / Structure
Friedel-Crafts acylation: An experiment incorporating spectroscopic structure determination  Schatz, Paul F.
Students use IR and NMR methods to determine the product of an aromatic substitution.
Schatz, Paul F. J. Chem. Educ. 1979, 56, 480.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure |
Aromatic Compounds
Substituent effects in electrophilic aromatic substitution. A laboratory in organic chemistry  Gilow, Helmuth
The acid catalyzed bromination of aromatic substrates with hydrobromous acid.
Gilow, Helmuth J. Chem. Educ. 1977, 54, 450.
Molecular Properties / Structure |
Aromatic Compounds |
Electrophilic Substitution |
Mechanisms of Reactions |
Catalysis
Where does resonance energy come from? A nonmathematical approach to the theory of aromaticity  Sardella, D. J.
In confronting the central issue of why aromatic systems are aromatic, the author provides a verbal application of perturbational molecular orbital theory.
Sardella, D. J. J. Chem. Educ. 1977, 54, 217.
Aromatic Compounds |
MO Theory
Imidazole - Versatile today, prominent tomorrow  Matuszak, C. A.; Matuszak, A. J.
Imidazole chemistry has pedagogical utility for all the organic chemistry students pursing careers in the life sciences.
Matuszak, C. A.; Matuszak, A. J. J. Chem. Educ. 1976, 53, 280.
Grignard Reagents |
Aromatic Compounds |
Heterocycles |
Phenols |
Acids / Bases |
Catalysis |
Coordination Compounds |
Hydrogen Bonding
A direct calorimetric demonstration of resonance energy in the benzene nucleus  van Vugt, W. H.; Mosselman, C.
This calorimetric experiment is intended as a first contact in chemical education with the aromaticity concept.
van Vugt, W. H.; Mosselman, C. J. Chem. Educ. 1975, 52, 746.
Calorimetry / Thermochemistry |
Resonance Theory
Experimental illustration of chemical principles in organic chemistry lectures  Haberfield, Paul
Lists a series of demonstrations used in the second semester of a one year organic chemistry course.
Haberfield, Paul J. Chem. Educ. 1972, 49, 702.
Electrophilic Substitution |
Aromatic Compounds |
Amines / Ammonium Compounds |
Nucleophilic Substitution
Dewar resonance energy  Baird, N. C.
In the present paper, some of the general properties of the Dewar Resonance Energy definition are developed. In particular, the DRE value for a compound is shown to be independent of the numerical values used to bond energies, and the use of DRE in judging the aromaticity of organic molecules is illustrated.
Baird, N. C. J. Chem. Educ. 1971, 48, 509.
Resonance Theory |
Aromatic Compounds |
Molecular Properties / Structure
Substituent effects on aromatic electrophilic substitution. An "experimental" class exercise  Fergwon, Philip R.
The exercise described here illustrates aromatic electrophilic substitution.
Fergwon, Philip R. J. Chem. Educ. 1971, 48, 405.
Electrophilic Substitution |
Aromatic Compounds
Nonlinear Hammett relationships  Schreck, James 0.
The author provides examples of nonlinear structure-reactivity , Hammett correlation's, and summarize most of the types of reactions in which deviations due to change in mechanism or rate-controlling step occur.
Schreck, James 0. J. Chem. Educ. 1971, 48, 103.
Mechanisms of Reactions |
Aromatic Compounds
Fluorine compounds as teaching aids in organic theory  Young, John A.
Fluorine compounds do obey the fundamental tenets of organic theory, but their frequent reversal of polarity, relative to hydrocarbon analogs, and the change in emphasis from a positive hydrogen ion to a negative fluoride ion allow the instructor to frame questions that demand reasoning rather than reiteration on the part of the student.
Young, John A. J. Chem. Educ. 1970, 47, 733.
Aromatic Compounds |
Mechanisms of Reactions
Aromatic nitro musk synthesis  Nash, E. Gary; Nienhouse, Everett J.; Silhavy, Thomas A.; Humbert, Dale E.; Mish, Mary Jo
This synthesis involves the preparation of the nitro-musks, musk xylene and/or musk ketone, from readily available m-xylene.
Nash, E. Gary; Nienhouse, Everett J.; Silhavy, Thomas A.; Humbert, Dale E.; Mish, Mary Jo J. Chem. Educ. 1970, 47, 705.
Aromatic Compounds |
Synthesis
The photoaddition of maleic anhydride to benzene: A simple organic experiment in a complicated system  Bozak, R. E.; Alvarez, V. E.
Presents the photochemical synthesis of benzopinacol as a pedagogical example of organic photochemistry suitable for the first-year organic course.
Bozak, R. E.; Alvarez, V. E. J. Chem. Educ. 1970, 47, 589.
Photochemistry |
Aromatic Compounds |
Synthesis
An integrated NMR and synthetic organic chemistry experiment  Glaros, George; Cromwell, Norman H.
Presents a synthetic sequence that involves procedures of general utility and results in products illustrative of the basic principles of NMR spectroscopy.
Glaros, George; Cromwell, Norman H. J. Chem. Educ. 1969, 46, 854.
Spectroscopy |
NMR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Aromatic Compounds
Undergraduate experiments with tetrachlorobenzyne  Heaney, H.; Marples, B. A.
Presents the preparation and experiments involving tetrachlorobenzyne.
Heaney, H.; Marples, B. A. J. Chem. Educ. 1968, 45, 801.
Aromatic Compounds |
Reactive Intermediates
Letter to the editor (the author replies)  Luder, W. F.
Replies to the concerns raised by the cited letter.
Luder, W. F. J. Chem. Educ. 1967, 44, 621.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure
Letter to the editor  Sementsov, A.
Questions the configuration of benzene supported by the theory discussed in the cited paper.
Sementsov, A. J. Chem. Educ. 1967, 44, 621.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure
The electron repulsion theory of the chemical bond. II. An alternative to resonance hybrids  Luder, W. F.
The author proposes the electron repulsion theory of the chemical bond as an alternative to resonance hybrids.
Luder, W. F. J. Chem. Educ. 1967, 44, 269.
Covalent Bonding |
Resonance Theory
Teaching aromatic substitution: A molecular orbital approach  Meislich, Herbert
This paper presents a way of teaching aromatic substitution using the concepts of alternate polarity and electron delocalization through extended pi-bonding.
Meislich, Herbert J. Chem. Educ. 1967, 44, 153.
Aromatic Compounds |
MO Theory |
Nucleophilic Substitution |
Covalent Bonding |
Molecular Properties / Structure
The activating effect of fluorine in electrophilic aromatic substitution  Ault, Addison
It is demonstrated here that in certain electrophilic aromatic substitution reactions fluorine is actually an activating substituent.
Ault, Addison J. Chem. Educ. 1966, 43, 329.
Electrophilic Substitution |
Aromatic Compounds |
Mechanisms of Reactions
Sonnet on a benzene ring  Moje, Stephen
Sonnet on a benzene ring.
Moje, Stephen J. Chem. Educ. 1966, 43, 151.
Aromatic Compounds
Aromatic substitution  Duewell, H.
Reports on the use of the molecular orbit theory in a qualitative approach to the activation and orientation of substitution in aromatic systems.
Duewell, H. J. Chem. Educ. 1966, 43, 138.
Aromatic Compounds |
MO Theory |
Mechanisms of Reactions
Benzene clathrate  Bhatnagar, Vijay Mohan
Describes the properties and investigations of a benzene clathrate, [Ni(CN)2.NH3.C6H6].
Bhatnagar, Vijay Mohan J. Chem. Educ. 1963, 40, 646.
Aromatic Compounds
Rules for molecular orbital structures  Meislich, Herbert
In view of the fact that molecular orbital theory makes more correct predictions and avoids the misconceptions that arise in the minds of novice students when they are exposed to resonance theory, it would be better to use M.O. theory as much as possible in teaching organic chemistry.
Meislich, Herbert J. Chem. Educ. 1963, 40, 401.
MO Theory |
Resonance Theory
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
The chemistry of benzyne  Bunnett, Joseph F.
Examines the chemistry of benzyne and alkynes.
Bunnett, Joseph F. J. Chem. Educ. 1961, 38, 278.
Aromatic Compounds |
Reactions |
Mechanisms of Reactions |
Alkynes
The contributions of Fritz Arndt to resonance theory  Campaigne, E.
Examines the contribution of Fritz Arndt to resonance theory and his work regarding the nature of bonds in pyrone ring systems.
Campaigne, E. J. Chem. Educ. 1959, 36, 336.
Resonance Theory |
Aromatic Compounds |
Covalent Bonding
Substituent effects on the benzene ring: A demonstration  Lambert, Frank L.
In a series of simple experiments it can be visually demonstrated that -OH, -OR, and -NR2 powerfully activate the benzene ring.
Lambert, Frank L. J. Chem. Educ. 1958, 35, 342.
Aromatic Compounds |
Molecular Properties / Structure
Representation of polycyclic aromatic compounds  Bieber, Theodore I.
Reviews the representation of polycyclic aromatic compounds and the matter of pi-electron sharing by adjacent sextets.
Bieber, Theodore I. J. Chem. Educ. 1958, 35, 235.
Aromatic Compounds |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The orientation and mechanism of electrophilic aromatic substitution  Ferguson, Lloyd N.
Electrophilic aromatic substitution apparently takes place by the formation of an intermediate pentadienate cation, +ArG, where Ar is an aromatic molecule and G is a portion of the reagent.
Ferguson, Lloyd N. J. Chem. Educ. 1955, 32, 42.
Electrophilic Substitution |
Reactions |
Mechanisms of Reactions |
Aromatic Compounds
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
Kekule's theory of aromaticity  Gero, Alexander
Examines what Kekule really wrote in his famous paper on the structure of benzene.
Gero, Alexander J. Chem. Educ. 1954, 31, 201.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Letters  Ferreira, Ricardo Carvalho
Identifies some inconsistencies in an earlier paper on isomerism and mesomerism.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1953, 30, 647.
Molecular Properties / Structure |
Resonance Theory |
Covalent Bonding
The organization of subject matter in elementary organic chemistry  MacKenzie, Charles A.
Describes a curricular approach in which aliphatic and aromatic compounds are treated simultaneously rather than separately.
MacKenzie, Charles A. J. Chem. Educ. 1953, 30, 243.
Aromatic Compounds |
Alkanes / Cycloalkanes
Aspects of isomerism and mesomerism. I. (a) Formulas and their meaning (b) Mesomerism  Bent, Richard L.
Examines molecular, empirical, structural, configurational, and projection formulas, as well as mesomerism (electronic isomers) and various types of resonance.
Bent, Richard L. J. Chem. Educ. 1953, 30, 220.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The concept of resonance energy in elementary organic chemistry  Gero, Alexander
The author describes an empirically-based presentation of resonance energy that is perfectly within reach of introductory organic students.
Gero, Alexander J. Chem. Educ. 1952, 29, 82.
Resonance Theory