TIGER

Journal Articles: 44 results
Assessing Nitration Products of Benzene Derivatives Using TLC Analysis  Rita K. Hessley
Thin layer chromatography is applied to an earlier published, guided discovery experiment using GCMS analyses to identify isomers formed by the nitration of mono-substituted benzenes.
Hessley, Rita K. J. Chem. Educ. 2008, 85, 1623.
Thin Layer Chromatography |
Gas Chromatography |
Mass Spectrometry |
Aromatic Compounds
Identification of Secondary Metabolites in Citrus Fruit Using Gas Chromatography and Mass Spectroscopy  Jean-Michel Lavoie, Esteban Chornet, and André Pelletier
Using a simple extraction and a gas chromatograph coupled with a mass spectrometer, this protocol allows students in analytical or organic chemistry to quantify and qualify monoterpenes from the peels of limes, grapefruits, and oranges.
Lavoie, Jean-Michel; Chornet, Esteban; Pelletier, André. J. Chem. Educ. 2008, 85, 1555.
Alkenes |
Food Science |
Gas Chromatography |
Mass Spectrometry |
Natural Products |
Plant Chemistry |
Qualitative Analysis |
Quantitative Analysis
The Iodochlorination of Styrene: An Experiment That Makes a Difference  R. Gary Amiet and Sylvia Urban
This purpose of this laboratory exercise is to determine the various substitution and elimination products generated in the iodochlorination of styrene and their relative proportions through the application of mechanistic principles and a basic knowledge of GCMS and NMR.
Amiet, R. Gary; Urban, Sylvia. J. Chem. Educ. 2008, 85, 962.
Alkenes |
Constitutional Isomers |
Gas Chromatography |
Instrumental Methods |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Synthesis |
Student-Centered Learning
Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction  Eric Martin and Cynthia Kellen-Yuen
A microwave-assisted Wittig reaction has been developed for the organic teaching laboratory. Utilizing this technique, a variety of styrene derivatives have been synthesized from aromatic aldehydes in good yields. The mixture of cis and trans alkenes produced also provides instructors with opportunities to emphasize the spectroscopic analysis of product mixtures.
Martin, Eric; Kellen-Yuen, Cynthia. J. Chem. Educ. 2007, 84, 2004.
Aldehydes / Ketones |
Alkenes |
Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Synthesis
Discovering Electronic Effects of Substituents in Nitrations of Benzene Derivatives Using GC–MS Analysis  Malgorzata M. Clennan and Edward L. Clennan
Describes an organic lab in which students pool mass spectral data to identify the distribution of isomer products generated by the nitration of six benzene derivatives whose substituents differ in their electronic effects. Students also determine which substituents direct nitration predominantly to the ortho- or para- and to the meta positions.
Clennan, Malgorzata M.; Clennan, Edward L. J. Chem. Educ. 2007, 84, 1679.
Aromatic Compounds |
Constitutional Isomers |
Electrophilic Substitution |
Gas Chromatography |
Mass Spectrometry
A Developmental History of Polymer Mass Spectrometry  Matthew J. Vergne, Robert P. Lattimer, and David M. Hercules
This review provides a historical perspective of the development of polymer mass spectrometry, divided into three eras: the small molecule era (1950s and 1960s); the macromass era (1970s and 1980s); and the modern era (the late 1980s to the present).
Vergne, Matthew J.; Lattimer, Robert P.; Hercules, David M. J. Chem. Educ. 2007, 84, 81.
Mass Spectrometry |
Materials Science |
Physical Properties |
Molecular Properties / Structure |
Instrumental Methods
3,5-Diarylisoxazoles: Individualized Three-Step Synthesis and Isomer Determination Using 13C NMR or Mass Spectroscopy  Chad E. Stephens and Reem K. Arafa
Describes the three-step synthesis and definitive characterization of a 3,5-diarylisoxazole via the chalcone and chalcone dibromide. The project is individualized with regard to compound purification, characterization, and literature searches as each student prepares a differently substituted chalcone.
Stephens, Chad E.; Arafa, Reem K. J. Chem. Educ. 2006, 83, 1336.
Alkenes |
Heterocycles |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis |
Spectroscopy
Analysis of the Thickening Agents in Automotive Greases by GC–MS  David Mayotte, Craig J. Donahue, and Cheryl A. Snyder
Describes a laboratory procedure for the identification of the thickening agents in lubricating greases by GCMS.
Mayotte, David; Donahue, Craig J.; Snyder, Cheryl A. J. Chem. Educ. 2006, 83, 902.
Applications of Chemistry |
Consumer Chemistry |
Gas Chromatography |
Industrial Chemistry |
Mass Spectrometry |
Separation Science |
Fatty Acids
A GC–MS Analysis of an SN2 Reaction for the Organic Laboratory  Malgorzata M. Clennan and Edward L. Clennan
This experiment utilizes an SN2 reaction between an alkyl bromide and potassium acetate to introduce the use of mass spectrometry for structural identification. It also provides students with experience in organic synthesis, the use of IR to identify functional groups, and the use of gas chromatography and response factors to determine product ratios.
Clennan, Malgorzata M.; Clennan, Edward L. J. Chem. Educ. 2005, 82, 1676.
IR Spectroscopy |
Mass Spectrometry |
Synthesis |
Chromatography |
Esters |
Mechanisms of Reactions |
Microscale Lab |
Gas Chromatography
Understanding Mass Spectra, A Basic Approach, Second Edition (R. Martin Smith)  Bill Boggess
The interpretation of mass spectra represents arguably the most significant challenge to both newcomers and practitioners in the field of mass spectrometry (MS). For those of us who have ever struggled to use a mass spectrum to solve the structure of an organic compound, R. Martin Smith offers the second edition of Understanding Mass Spectra, A Basic Approach. Fortunately, the author manages to go well beyond the obvious and expected explanations of the common modes of fragmentation for ions generated during electron ionization (EI) by offering a rational approach to mass spectral problem solving. This ten-step approach, which represents the most important contribution of this text, appears in chapter 5 and is condensed into table 5.1.
Boggess, Bill. J. Chem. Educ. 2005, 82, 687.
Mass Spectrometry |
Instrumental Methods
Quantitation of Phenol Levels in Oil of Wintergreen Using Gas ChromatographyMass Spectrometry with Selected Ion Monitoring. A Quantitative Analysis Laboratory Experiment  Robert M. Sobel, David S. Ballantine, and Victor Ryzhov
A quantitative analysis or instrumental analysis laboratory experiment was created to perform a gas chromatographymass spectrometry analysis of phenol level found in natural products. The analysis utilizes selected ion monitoring for the determination of phenol concentration in natural oil of wintergreen. The experimental design addresses the industrys need for increasing awareness of gas chromatographymass spectrometry techniques with shortened analysis time.
Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor. J. Chem. Educ. 2005, 82, 601.
Chromatography |
Instrumental Methods |
Mass Spectrometry |
Natural Products |
Gas Chromatography |
Quantitative Analysis
Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC–MS in the General Chemistry Curriculum  Lawrence K. Fong
From the mass spectral data, our students are able to determine the atomic mass of the transition metal. In addition, utilizing Mo(CO)6 as an internal standard, our students are able to quantify the quantity of Cr(CO)6 and W(CO)6 in an unknown mixture.
Fong, Lawrence K. J. Chem. Educ. 2004, 81, 103.
Chromatography |
Instrumental Methods |
Isotopes |
Mass Spectrometry |
Metals |
Quantitative Analysis |
Transition Elements |
Gas Chromatography
Investigation of Imposter Perfumes Using GC–MS  Kelley A. Mowery, Daniel E. Blanchard, Stephanie Smith, and Thomas A. Betts
The minimal sample preparation required for this experiment enables students to spend significantly more time becoming familiar with GCMS hardware and software. After performing the experiment students should be familiar with the operation of a modern GCMS, headspace sampling, data analysis using GCMS software tools, and mass spectral library searching.
Mowery, Kelley A.; Blanchard, Daniel E.; Smith, Stephanie; Betts, Thomas A. J. Chem. Educ. 2004, 81, 87.
Chromatography |
Consumer Chemistry |
Instrumental Methods |
Mass Spectrometry |
Gas Chromatography
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
Organic Spectroscopy–A Capstone Experience  Jan M. Fleischer
Experiment requiring students to make decisions regarding the likely structure of their sample based upon an IR spectrum before a final analysis with NMR spectroscopy.
Fleischer, Jan M. J. Chem. Educ. 2002, 79, 1247.
IR Spectroscopy |
Mass Spectrometry |
Fourier Transform Techniques |
NMR Spectroscopy |
Molecular Properties / Structure
Mass Spectral Fragmentation Patterns of Deuterated Butyl and Ethyl Acetates: An Easy Microscale Isotopic Labeling Experiment  Hengameh Zahedkargaran and Leverett R. Smith
Microscale experiment that illustrates the use of isotopic labeling to help confirm and interpret mass spectral fragmentation patterns.
Zahedkargaran, Hengameh; Smith, Leverett R. J. Chem. Educ. 2001, 78, 1379.
Chromatography |
Isotopes |
Mass Spectrometry |
Microscale Lab |
Synthesis |
Gas Chromatography
Metal Complexes of Trifluoropentanedione. An Experiment for the General Chemistry Laboratory  Robert C. Sadoski, David Shipp, and Bill Durham
Investigation of the transition-metal complexes produced by the reactions of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with 1,1,1-trifluoro-2,4-pentanedione; mass spectroscopy is used to determine the stoichiometry of the reaction products.
Sadoski, Robert C.; Shipp, David; Durham, Bill. J. Chem. Educ. 2001, 78, 665.
Coordination Compounds |
Synthesis |
Mass Spectrometry |
Transition Elements |
Stoichiometry
Mass Spectrometry Desk Reference (by O. David Sparkman)   Bill Boggess
Informative lexicon of mass spectrometric terminology.
Boggess, Bill. J. Chem. Educ. 2001, 78, 168.
Mass Spectrometry
A New GC-MS Experiment for the Undergraduate Instrumental Analysis Laboratory in Environmental Chemistry: Methyl-t-butyl Ether and Benzene in Gasoline  Dinh T. Quach, Nancy A. Ciszkowski, and Barbara J. Finlayson-Pitts
In addition to illustrating the fundamentals of GC and MS, this experiment demonstrates (i) the use of internal standards to improve precision; (ii) the application of the method of standard additions; and (iii) the importance of techniques such as selected ion extraction/monitoring in the identification and measurement of specific highly volatile organic compounds in complex environmental mixtures.
Quach, Dinh T.; Ciszkowski, Nancy A.; Finlayson-Pitts, Barbara J. J. Chem. Educ. 1998, 75, 1595.
Instrumental Methods |
Chromatography |
Mass Spectrometry |
Quantitative Analysis |
Gas Chromatography |
Aromatic Compounds |
Ethers
Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Instrumentation and Applications  David C. Muddiman, Ray Bakhtiar, Steven A. Hofstadler, and Richard D. Smith
This article introduces educators and researchers to the theory, principles, instrumentation, and some applications of MALDI-MS. Reflectron time-of-flight (TOF) mass analyzers are described in detail, since TOF is the most common mass analyzer for ions produced by MALDI.
Muddiman, David C.; Bakhtiar, Ray; Hofstadler, Steven A.; Smith, Richard D. J. Chem. Educ. 1997, 74, 1288.
Mass Spectrometry |
Lasers |
Instrumental Methods
Integration of GC/MS Instrumentation into the Undergraduate Laboratory: Separation and Identification of Fatty Acids in Commercial Fats and Oils  Judith F. Rubinson and Jennifer Neyer-Hilvert

Rubinson, Judith F.; Neyer-Hilvert, Jennifer. J. Chem. Educ. 1997, 74, 1106.
Instrumental Methods |
Chromatography |
Mass Spectrometry |
Food Science |
Gas Chromatography |
Separation Science |
Qualitative Analysis |
Quantitative Analysis |
Fatty Acids
An Environmentally Significant Experiment Using GC/MS and GC Retention Indices in an Undergraduate Analytical Laboratory  Rebecca Guisto-Norkus, Giv Gounili, Peter Wisniecki, John A. Hubball, S. Ruven Smith, James D. Stuart
Students extract and analyze the additives from plastic food wrap, Tygon tubing and plastic soda bottles that have been crushed in a bottle return machine. The modifiers are extracted from the plastics using methylene chloride and/or methanol as solvents and the extracts are analyzed by GC/MS.
Guisto-Norkus, Rebecca; Gounili, Giv; Wisniecki, Peter; Hubball, John A.; Smith, S. Ruven; Stuart, James D. J. Chem. Educ. 1996, 73, 1176.
Gas Chromatography |
Mass Spectrometry
An Efficient Microscale Procedure for the Preparation of 3,5-Dinitrobenzoates  Richard F. Smith and Gaetano M. Cristalli
A laboratory to introduce the concept and technique of mass spectroscopy to introductory organic students; sample data and analysis included.
Smith, Richard F.; Cristalli, Gaetano M. J. Chem. Educ. 1995, 72, A160.
Mass Spectrometry |
Gas Chromatography |
Aldehydes / Ketones |
Instrumental Methods |
Qualitative Analysis |
Microscale Lab
Interpretation of mass spectra: A direct learning approach through software   Lehman, Thomas; Vagenin, Grigory
Software available from NIST makes it possible for students to peruse 735 carefully chosen spectra.
Lehman, Thomas; Vagenin, Grigory J. Chem. Educ. 1993, 70, A316.
Mass Spectrometry
GC/MS experiments for the organic laboratory: II. Friedel-Crafts alkylation of p-xylene   Novak, Michael; Heinrich, Julie
Experiments for the sophomore organic chemistry laboratory that make use of capillary gas chromatography (GC) and mass spectroscopy(MS), teach the use of MS fragmentation patterns in structure determination, and also illustrate the effects of reaction conditions on the product distribution in well-known reactions.
Novak, Michael; Heinrich, Julie J. Chem. Educ. 1993, 70, A150.
Mass Spectrometry |
Gas Chromatography |
Aromatic Compounds |
Alkylation
Integrating research instrumentation with the general chemistry curriculum. Part I: Mass spectrometry  Eichstadt, Karen E.
A three-part exercise entitled "A Glimpse of Mass Spectrometry" was designed for students enrolled in the third quarter of a one-year, nonmajor course that surveyed organic and biological chemistry.
Eichstadt, Karen E. J. Chem. Educ. 1992, 69, 48.
Mass Spectrometry |
Laboratory Equipment / Apparatus |
Nonmajor Courses
Mass spectrometer interface with an Apple II computer   Stahl, John W.
The author upgraded a low-cost mass spectrometer into a very functional instrument using a commercial computer interface, some hardware modification, and custom-written software.
Stahl, John W. J. Chem. Educ. 1990, 67, A72.
Laboratory Computing / Interfacing |
Mass Spectrometry
Qualitative amino acid analysis of small peptides by GC/MS  Mabbott, Gary A.
Besides being appealing to students the exercise described here gives them experiences in derivation methods that are often necessary in order to make nonvolatile samples amenable to gas chromatography separation.
Mabbott, Gary A. J. Chem. Educ. 1990, 67, 441.
Amino Acids |
Qualitative Analysis |
Gas Chromatography |
Mass Spectrometry |
Instrumental Methods
The mass spectrum of sulfur  Dudek, Gerald; Dudek, Emily P.
The concepts of isotopic abundance, mass defect, fragmentation, and nuclear binding energies are all illustrated in the readily interpretable spectrum of a nonorganic material.
Dudek, Gerald; Dudek, Emily P. J. Chem. Educ. 1989, 66, 304.
Mass Spectrometry |
Atomic Properties / Structure
Mass spectral analysis of halogen compounds   Holdsworth, David K.
37. Bits and pieces, 14. A pocket calculator can be programmed to decide and display the halogen combination in a molecular-ion cluster by examination of the (M+2)/M or (X+2)/X percentage values.
Holdsworth, David K. J. Chem. Educ. 1983, 60, 103.
Chemometrics |
Mass Spectrometry
Simulation of chemical instrumentation. II: A program for the synthesis of mass spectral isotopic abundances  Brownawell, Marilyn L.; San Filippo, Joseph, Jr.
31.
Brownawell, Marilyn L.; San Filippo, Joseph, Jr. J. Chem. Educ. 1982, 59, 663.
Mass Spectrometry |
Isotopes
Spectroscopy in organic chemistry at the introductory level  Gurst, Jerome E.
This author has found that the use of a limited series of compounds allow students to focus attention on the spectra rather than the structural formulas of many compounds. This allows students to grasp the significance of the spectral measurements in a minimal time period.
Gurst, Jerome E. J. Chem. Educ. 1981, 58, 511.
Spectroscopy |
UV-Vis Spectroscopy |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy
High resolution mass spectra analysis with a programmable calculator  Holdsworth, David K.
Calculator programs to analyze mass spectra data.
Holdsworth, David K. J. Chem. Educ. 1980, 57, 99.
Mass Spectrometry
Isomer analysis by spectral methods  Poulton, Gerald A.
The use of NMR, UV and mass spectroscopy and gas chromatography to introduce students to the use of spectra to determine the products of a reaction and their relative amounts.
Poulton, Gerald A. J. Chem. Educ. 1975, 52, 397.
Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Gas Chromatography
The preparation and spectral analysis of toluene-a[alpha]-d  Ellis, Jerry W.; Buchanan, David H.
Provides dramatic visual evidence of the changes in IR, NMR, and mass spectra upon substitution of deuterium for hydrogen in a simple molecule.
Ellis, Jerry W.; Buchanan, David H. J. Chem. Educ. 1975, 52, 265.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Spectroscopy
The effects of aryl substituents on ir, nmr, and mass spectra of N-t-butylbenzamides  Rubottom, George M.
The authors have developed this experiment in order to give students the opportunity to carry out a high yield synthetic reaction coupled with an analysis of the effects of substituents on the IR, NMR, and mass spectral properties of the compounds prepared.
Rubottom, George M. J. Chem. Educ. 1974, 51, 616.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry
Relative isotopic abundances in halogenated methane fragments. An undergraduate experiment  Leech, J. R.; Daugherty, K. E.
A mass spectrometer experiment at the sophomore level in analytical chemistry is designed for the determination of the relative isotopic abundances of halogenated methane fragments and the subsequent comparison with known abundances.
Leech, J. R.; Daugherty, K. E. J. Chem. Educ. 1973, 50, 569.
Mass Spectrometry
Mass spectrometers. Part 1  Ewing, Galen W.
Examines ion sources, sample handling, vacuum systems, and using the mass spectrometer to monitor the effluent from a gas chromatograph.
Ewing, Galen W. J. Chem. Educ. 1969, 46, A69.
Spectroscopy |
Mass Spectrometry |
Laboratory Equipment / Apparatus |
Gas Chromatography
Spectrometric identification of insect sex attractants  Silverstein, Robert M.
Uses spectrometric methods to identify the sex attractants of three types of beetle pests.
Silverstein, Robert M. J. Chem. Educ. 1968, 45, 794.
Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Qualitative Analysis |
Mass Spectrometry |
NMR Spectroscopy
Mass spectrometry, part two  Wiberley, Stephen E.; Aikens, David A.
Considers the applications of mass spectrometry and various commercial mass spectrometers.
Wiberley, Stephen E.; Aikens, David A. J. Chem. Educ. 1964, 41, A153.
Instrumental Methods |
Mass Spectrometry
Mass spectrometry  Wiberley, Stephen E.; Aikens, David A.
Examines the theory of mass spectroscopy and factors that influence mass spectra.
Wiberley, Stephen E.; Aikens, David A. J. Chem. Educ. 1964, 41, A75.
Mass Spectrometry |
Spectroscopy |
Instrumental Methods |
Laboratory Equipment / Apparatus
Interpretation of mass spectra of organic compounds (Budzikiewicz, Herbert; Djerassi, Carl; Williams, Dudley H.)  Silverstein, Robert M.

Silverstein, Robert M. J. Chem. Educ. 1964, 41, 464.
Mass Spectrometry |
Instrumental Methods
Spectrometric identification of organic compounds  Silverstein, Robert M.; Bassler, G. Clayton
Presents a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy, along with specific examples of unknowns and their spectra,
Silverstein, Robert M.; Bassler, G. Clayton J. Chem. Educ. 1962, 39, 546.
Spectroscopy |
Qualitative Analysis |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy |
UV-Vis Spectroscopy
The use of mass spectrometry in organic analysis  Eliel, Ernest L.; Prosser, Thomas J.; Young, George W.
Examines the applications of mass spectroscopy to organic chemistry, particularly with respect to quantitative analysis.
Eliel, Ernest L.; Prosser, Thomas J.; Young, George W. J. Chem. Educ. 1957, 34, 72.
Mass Spectrometry |
Quantitative Analysis